摘要:
The invention relates to a device (300) for controlling a sensor (310), comprising a converter unit (320) for converting an input signal (365) into a control signal (360) for controlling said sensor (310), and a comparison unit (330) for determining a differential signal (370) that indicates the difference between said input signal (365) and control signal (360). The device also comprises a feedback unit (340) for regulating the input signal (365) using said differential signal (370). A differential signal (370) transfer function has a zero point at a sensor (310) operating frequency which does not equal zero.
摘要:
The invention relates to a navigation device comprising a turntable which can be rotated about an axis in at least two different rotary positions, in accordance with a rotary control signal. An inertial measuring unit is arranged on the rotary table which can be rotated with the rotary table. The quality of the measurement data can be determined by the initial measuring unit with the help of an evaluation device. When the determined quality does not reach a predetermined minimum quality, the rotary table rotates in the respective other rotary position.
摘要:
The invention relates to a controller (200) for controlling a rotation rate sensor, having a first control circuit (202) and a second control circuit (204). The first control circuit has a first control unit (210) for controlling an oscillation of the rotation rate sensor along a first direction, a first digital-to-analog converter (240) for converting a first digital control signal (215) output by the first control unit (210) into a first analog signal (245) with which the oscillation of the rotation rate sensor along the first direction is controlled, and a first analog-to-digital converter (250) for converting a first analog measurement signal (235) which describes the oscillation of the rotation rate sensor along the first direction into a first digital read-out signal (255) which is supplied to the first control unit (210). The second control circuit (204) has a second control unit (220) for controlling an oscillation of the rotation rate sensor along a second direction which is different from the first direction and a second digital-to-analog converter (270) for converting a second digital control signal (225) output by the second control unit into a second analog signal (275) with which the oscillation of the rotation rate sensor along the second direction is controlled.
摘要:
In a method for producing a component, a first layer composite is first produced, comprising a structured layer and a trench filled with an insulating material. The structured layer is electrically conductive at least in a first region. The trench filled with an insulating material extends outwards from a first surface of the structured layer and is arranged in the first region of the structured layer. The first surface of the structured layer faces a first surface of the first layer composite. The method additionally has the step of producing a second layer composite, which has a first depression in a first surface of the second layer composite, and the step of connecting the first layer composite to the second layer composite. The first surface of the first layer composite adjoins the first surface of the second layer composite at least in some regions, said filled trench being arranged within the lateral position of the first depression. After the first layer composite has been connected to the second layer composite, the thickness of the first layer composite from a second surface of the first layer composite to the depth of the filled trench is reduced. The second surface of the first layer composite lies opposite the first surface of the first layer composite. The method further has the step of producing an active structure in the structured layer, said active structure comprising two second regions which are arranged in the first region of the structured layer and which are mechanically connected to each other in a rigid manner but are electrically insulated from each other by means of the filled trench.
摘要:
The invention relates to a controller (200) for controlling a rotation rate sensor, having a first control circuit (202) and a second control circuit (204). The first control circuit has a first control unit (210) for controlling an oscillation of the rotation rate sensor along a first direction, a first digital-to-analog converter (240) for converting a first digital control signal (215) output by the first control unit (210) into a first analog signal (245) with which the oscillation of the rotation rate sensor along the first direction is controlled, and a first analog-to-digital converter (250) for converting a first analog measurement signal (235) which describes the oscillation of the rotation rate sensor along the first direction into a first digital read-out signal (255) which is supplied to the first control unit (210). The second control circuit (204) has a second control unit (220) for controlling an oscillation of the rotation rate sensor along a second direction which is different from the first direction and a second digital-to-analog converter (270) for converting a second digital control signal (225) output by the second control unit into a second analog signal (275) with which the oscillation of the rotation rate sensor along the second direction is controlled.
摘要:
A control device comprises a sensor unit, which outputs a measurement signal, which reflects a deviation of an oscillator along a direction of excitation. A controller main unit derives a control signal for an actuator unit from the measurement signal and a harmonic set point signal such that the actuator unit counteracts a deviation of the deflection of the oscillator from a set amplitude of a harmonic resonance oscillation. A controller extension unit estimates actual-phase and actual-amplitude of a residual oscillation of the oscillator and synchronizes the harmonic set point signal with the residual oscillation at a deactivated actuator unit. The residual energy contained in the residual oscillation is used, in order to arrive faster at a defined operation state of the oscillator.
摘要:
In an integrated optical circuit, light from a light source is polarized and coupled to a first and second strip waveguide. A waveguide coupling element couples the two optical signals from the two strip waveguides to different polarization modes of an optical fiber line. The optical fiber line is connected to a measuring head, which reflects the optical signal and in which a phase difference between the two optical partial signals is modulated in a magnetic field. In the waveguide coupling element, the reflected signal is split into two optical partial signals having the same polarization and the phase difference between the two partial signals is determined. A phase modulator device provides for closed-loop operation. Compared to fiber-optical concepts, the number of splices is reduced.
摘要:
A digital integrated optical modulator, in particular for a fiber optical signal transmission or measuring device, having two waveguide arms and electrodes that are arranged along both waveguide arms in or on an optical substrate, wherein the arrangements of the electrodes along the two waveguide arms are different from each other.
摘要:
In the case of a fiber-optic Sagnac interferometer, the output of an analog/digital converter and thus output signals processed in a main control circuit as well as a phase resetting signal for a phase modulation encompass a first word width. An input of a digital/analog converter and thus a resetting signal, which acts on the phase modulator, encompasses a second word width, which is smaller than the word width, with which the resetting and modulation signal is computed. A residual value signal comprising a third word width, which can be added to the output signal of the analog/digital converter via an adder, is obtained from the surplus, low-value bits.
摘要:
The invention relates to a winding device (100) for winding a fibre coil, comprising a coil carrier (110) for wrapping with fibre (210) in order to produce a coil body (220) made of wound fibres (210), a fibre supply (120) for supplying a fibre (210) for wrapping the coil carrier (110), and an adhesive device (130) for producing droplets of adhesive (140) for bonding the outermost layer of fibres (210) on the coil body (220) to fibres (210) freshly laid onto the coil body (220).