Abstract:
A method and system for changing the power state of a portable electronic device is disclosed. A portable electronic device may be powered up or powered down responsive to a user interaction with the portable electronic device. The user interaction may be an insertion of a stylus or other user interface object into a housing of the portable electronic device. Alternatively, the user interaction may be a removal of a stylus or other user interface object from the housing of the portable electronic device. The user interaction may be a rotation of a cover of the portable electronic device.
Abstract:
Techniques to dynamically manage wireless connections are described. For example, a mobile computing device may comprise a connection management module to dynamically select one of a plurality of switching technologies to initiate a connection with one or more target devices and automatically initiate the connection with the one or more target devices using the dynamically selected switching technology. Other embodiments are described and claimed.
Abstract:
Techniques to dynamically manage wireless connections using feature prioritization are described. For example, a mobile computing device may comprise a connection management module operative to access a list of one or more wireless networks, compare feature set information for the one or more wireless networks, select a wireless network based on the comparison, and initiate a wireless connection using the selected wireless network, wherein the feature set information is contained in the list. Other embodiments are described and claimed.
Abstract:
Systems, methods, and other embodiments associated with updating firmware for a chip are described. One example method may include performing an external verification of updated firmware received and stored external to the chip to determine if the updated firmware is authentic. Upon determining that the updated firmware is authentic, the updated firmware is loaded into the chip. An internal verification of the updated firmware within the chip is performed to determine that the updated firmware is authentic. The internal verification is assured to succeed based on the external verification. Because the internal verification will succeed, the chip avoids reverting to a default firmware.
Abstract:
An integrated device provides functionality of both a PDA and cellular telephone. Features include a power button offering control of both the computing and telephony functions of the device; a lid that turns the device on and off and controls additional telephony functions; a jog rocker that activates the device and is used to select from a variety of menu options; application buttons that offer direct access to applications stored on the device, and which can be configured to operate in conjunction with secondary keys to offer added functionality; a keyboard that enables data input into the device; an automatic word completion function that verifies and corrects a user's typing in real time; and a simplified keyboard navigation system that allows the navigation of menus using keyboard shortcuts.
Abstract:
A docking station is provided for a computing device. The docking station may be used by, for example, a mobile computing device, such as a cellular or wireless telephony/messaging device. The docking station includes a housing comprising a receiving surface top receive and retain the mobile computing device. An inductive signal transfer interface is included with the housing to inductively signal at least one of power or data to the mobile computing device. The docking station further provides an output component and processing resources. The processing resources are configured to detect placement of the mobile computing device on the receiving surface. The data is received from the mobile computing device, and an output is signaled to the output component based on the received data.
Abstract:
A portable computer system that comprises adjustable brightness settings and brightness control for providing improved user readability and prolonged life of the display screen is disclosed. The main processor can change the brightness range settings in response to a change in ambient light conditions. The user can also control the brightness of the display. The time required to implement a brightness change can be set to a value which can be configured by the user.