Abstract:
A method and apparatus for assembly particularly addressed to the assembly of automobiles and aircraft done with reconfigurable modular and "intelligent" tooling fixtures (also called jigs, or holding fixtures). Much of the capability of the system is brought by the optical or other non-contact sensing devices incorporated with the tools to provide information on part location, tooling detail location, and automation (such as robots), used to load, weld, rivet, or otherwise perform work with parts in the tool. A preferred version of the invention uses 3-dimensional stereo and/or other simpler electro-optical ranging and feature location sensors operating in real time to perform numerous measurements of location of critical features of assembly tools and the parts placed within them, to even include detection of abnormal features such as missing holes or welds. The computer system associated with the sensors builds up a data base of part condition before, during and after welding (or other working or assembly function within the tool). This data base is used automatically, or by an engineer or operator, to continuously improve the process and to feed data to related processes.
Abstract:
Method and apparatus for imaging an object illuminated with light onto a photodetector array including a microcomputer for controlling the light gathering of the photodetector array by varying the amount of light reflected onto the photodetector array and by varying a photodetector array variable in response to the output of the photodetector array. In one embodiment, the amount of light reflected onto the photodetector array is varied by modifying either the time the light is reflected onto the array or the power of the light reflected onto the array.
Abstract:
A method and apparatus for optically determining the dimension of part surfaces. Particular embodiments describe optical triangulation based coordinate measurement machines capable of accurate measurement of complex surfaces, such as gear teeth and turbine blades. Other embodiments provide highly useful sensors for robot guidance and related purposes. Up to 5 axis sensing capability is provided on surfaces of widely varying form.
Abstract:
A method and apparatus for optically determining the dimension of part surfaces. Particular embodiments describe optical triangulation based coordinate measurement machines capable of accurate measurement of complex surfaces, such as gear teeth and turbine blades. Other embodiments provide highly useful sensors for robot guidance and related purposes. Up to 5 axis sensing capability is provided on surfaces of widely varying form.
Abstract:
This invention discloses method and apparatus for optically determining the dimension of part surfaces. Particular embodiments describe optical triangulation based coordinate measurement machines capable of accurate measurement of complex surfaces, such as gear teeth and turbine blades. Other embodiments provide highly useful sensors for robot guidance and related purposes. Up to 5 axis sensing capability is provided on surfaces of widely varying form.
Abstract:
Methods and apparatuses for assemblying, handling, and fabrication are disclosed in which targets are used on objects. The targets can be specifically applied to the object, or can be an otherwise normal feature of the object. Conveniently, the targets are removable from the object or covered by another object during an assemblying process. One or more robots and imaging devices for the targets are used. The robots can be used to handle or assemble a part, or a fixture may be used in conjunction with the robots. Conveniently, the CAD design system is used in designing the targets as well as for the assembly process using the targets. A plurality of targets can also be used to monitor and inspect a forming process such as on a sheet panel.
Abstract:
A method and apparatus for optically determining the dimension of part surfaces. Particular embodiments describe optical triangulation based coordinate measurement machines capable of accurate measurement of complex surfaces, such as gear teeth and turbine blades. Other embodiments provide highly useful sensors for robot guidance and related purposes. Up to 5 axis sensing capability is provided on surfaces of widely varying form.
Abstract:
Target based machine vision useful for alignment of sensors and other objects affixed to structures, robots and the like. While addressed particularly to alignment of machine vision systems relative to structures, the techniques disclosed are useful with a multitude of different sensors and objects.
Abstract:
A new method and apparatus for fabrication or alignment of fixtures, jigs and structures is disclosed. The invention uses target points on one or more details which are referenced to the overall structure via targets on the details. These targets are monitored by a TV camera unit which is alternatively interfaced to a display for the human operator or a robot to provide position data. The interface may include input from a CAD system which allows display on robot coordinates to be offset by design data of the structure or a part to be located on it. While mainly envisioned for assistance in constructing fixtures for automobile assembly, the disclosed invention is widely useable for all types of construction including aircraft, bridges, boats, buses, houses, buildings and the like. A means for improving resolution of automatically servoed camera based systems is also disclosed.
Abstract:
Target based machine vision useful for alignment of sensors and other objects affixed to structures, robots and the like. While addressed particularly to alignment of machine vision systems relative to structures, the techniques disclosed are useful with a multitude of different sensors and objects.