Abstract:
A spectroscopy system for high-accuracy, highly automated spectral imaging of a target is provided. Video and spectrometry information are obtained via an integrated video, spectrometry and distance sensing platform and processed by a computer. The processed video and spectrometry information are presented in real-time on an integrated display, with a graphical representation of the actual ground instantaneous field of view of the spectrometer sensor overlaid directly onto the video image of the target to provide real-time target aiming information, thus enabling the operator to rapidly optimize spectral data acquisition.
Abstract:
A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter ("LVF") window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.
Abstract:
In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an “expert system” which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the “expert system” remotely, to assess activity within the growth chamber, and can override the “expert system”.
Abstract:
A spectroscopy system for high-accuracy, highly automated spectral imaging of a target is provided. Video and spectrometry information are obtained via an integrated video, spectrometry and distance sensing platform and processed by a computer. The processed video and spectrometry information are presented in real-time on an integrated display, with a graphical representation of the actual ground instantaneous field of view of the spectrometer sensor overlaid directly onto the video image of the target to provide real-time target aiming information, thus enabling the operator to rapidly optimize spectral data acquisition.