Abstract:
Interfering internal beams can be used to generate an internal reference interferogram. This interferogram can be used to compensate for changes in FTIR instrument performance in response to variable environmental conditions or other instrument variations. Acquisition of such internal interferograms can be done during, after, or prior to acquisition of actual sample data.
Abstract:
A delay line device and a terahertz time-domain spectrometer system include: a baseplate, a slide rail component, in which the slide rail component includes a slide, a reflector, a grating ruler component, and an electric-magnetic induction component. When the electric-magnetic component, after being applied a current, cuts the magnetic induction coil to generate power to push the slide moving, the grating ruler component placed on the slide rail component collects the movement information of the slide. The slide's movement drives the reflector placed on the slide to move together to change the optical distance of a pump light, so as to generate the delay between the pump light and a probe light.The changes to the abstract are shown below:A delay line device and a terahertz time-domain spectrometer system include: a baseplate, a slide rail component, in which the slide rail component includes a slide, a reflector, a grating ruler component, and an electric-magnetic induction component. When the electric-magnetic component, after being applied a current, cuts the magnetic induction coil to generate power to push the slide moving, the grating ruler component placed on the slide rail component collects the movement information of the slide. The slide's movement drives the reflector placed on the slide to move together to change the optical distance of a pump light, so as to generate the delay between the pump light and a probe light.
Abstract:
A light radiating portion radiates light with wavelength λ1 having predetermined absorptivity for an object and light with wavelength λ2 having smaller absorptivity for the object than the wavelength λ1, to a target, so as to scan in 2-dimensional directions. A light receiving portion receives scattered lights reflected by the target based on light with wavelength λ1 and light with wavelength λ2. A measuring portion generates information used for detection of the object at the target, based on difference between the two scattered lights with wavelength λ1 and wavelength λ2 received by the light receiving portion. An output portion outputs whether or not the object is present at the target, by 2-dimensional area information, based on scanning by the light radiating portion and information generated by the measuring portion.
Abstract:
The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction, and a second grating region having a second grating width in the transverse direction. The first grating region and the second grating region are adjacent in the transverse direction, wherein the first grating region has a grating period Λ1 in a longitudinal direction, and the second grating region has a grating period Λ2 in the longitudinal direction, where the longitudinal direction is orthogonal to the transverse direction. A grating period spacing ΔΛ=Λ1-Λ2 is finite. Further, the first and second grating periods are chosen to provide optical resonances for light respectively in a first wavelength band and a second wavelength band, light is being emitted, transmitted, or reflected in an out-of-plane direction, wherein the first wavelength band and the second wavelength band are at least partially non-overlapping in wavelength. The system further comprises a light source for illuminating at least a part of the grating device with light at an illumination wavelength band. Additionally, the system comprises an imaging system for imaging the emitted, transmitted or reflected light from the grating device. The imaging system comprises an optical element, such as a cylindrical lens or a bended mirror, configured for focusing light in a transverse direction and for being invariant in an orthogonal transverse direction, the optical element being oriented such that the longitudinal direction of the grating device is oriented to coincide with the invariant direction of the optical element, and an imaging spectrometer comprising an entrance slit having a longitudinal direction oriented to coincide with the invariant direction of the optical element. The imaging spectrometer further comprises a 2-dimensional image sensor. The invention further relates to a method.
Abstract:
In one embodiment, a wavefront sensor is combined with a slit lamp eye examination device so that real time aberration values of an eye being examined can be viewed during a slit lamp eye examination session.
Abstract:
An apparatus including a position sensing detector and a processing system, with the processing system configured to determine axis of astigmatism and cylinder and sphere diopter values of a subject eye.
Abstract:
An apparatus including a wavefront sensor including a light source configured to illuminate a subject eye, a detector, an image sensor configured to output an image of the subject eye, a first beam deflecting element configured to intercept a wavefront beam returned from a subject eye when the subject eye is illuminated by the light source and configured to direct a portion of the wavefront from the subject eye through an aperture toward the detector and a controller, coupled to the light source, the image sensor and the beam deflecting element, configured to process the image to determine transverse movement of the subject eye and to control the beam deflecting element to deflect and project through the aperture portions of an annular ring portion of the wavefront and further configured to pulse the light source at a firing rate to sample selected portions of the annular ring at the detector, to process the image of the subject eye to calculate transverse movement of the subject eye and to orient the beam deflecting element at a DC offset angle to compensate transverse movement of the subject eye.
Abstract:
A sequential wavefront sensor includes a light source, a beam deflecting element, a position sensing detector configured to output a plurality of output signals and a plurality of composite transimpedance amplifiers each coupled to receive an output signal. The output of each composite transimpedance amplifier is phase-locked to a light source drive signal and a beam deflecting element drive signal.
Abstract:
A spectroscopic assay is provided. The assay comprises: a motive particle configured to move within a solution, the motive particle comprising a first analyte binding reagent for selectively binding to a target analyte; and a spectroscopic reporter particle configured to provide a predetermined spectroscopic signal in response to being interrogated by a spectrometer, the spectroscopic reporter particle comprising a second analyte binding reagent for selectively binding to the target analyte, wherein the motive particle and the spectroscopic reporter particle are configured to provide a sandwich assay in the presence of the target analyte via the first and second analyte binding reagents.
Abstract:
In one embodiment a wavefront sensor is configured to measure real time aberration values of a wavefront returned from the eye of a patient while an image of the eye of the patient is being viewed by a surgeon during an on-going vision correction procedure and for providing an output signal indicating real time aberration values and a display, coupled to the wavefront sensor, is configured to show a dynamic display indicating the real time aberration values to the surgeon and configured to be viewed by the surgeon while also viewing the image of the eye of the patient during the on-going vision correction procedure.