Abstract:
A method is provided of obtaining information representative of an availability of a communications network, which includes a plurality of equipment exchanging routing data in accordance with a routing protocol. The method includes a stage of storing in chronological order at least some of the routing data exchanged between at least one first equipment and at least one second equipment; a stage of totaling unavailability times as a function of the routing data stored in chronological order for a predetermined time period; a stage of obtaining the information representative of an availability for the time period as a function of the totaled unavailability times.
Abstract:
A method (200) of controlling a liquid crystal display (LCD) (110) integrated within a sensing device for operation in cold temperature is provided. The method (200) includes providing electrical power to the LCD (110), providing an electrical signal to the LCD (110) to update displayed information, measuring (206) the ambient temperature proximate the LCD (110) and making adjustments to the power and update information supplied to the LCD (110) based on the ambient temperature. Another aspect of the invention includes a field device (10) including an LCD (110), an electronic control module (120) configured to provide power and communication signals to the LCD (110), and a temperature sensor (112) coupled to the electronic control module (120). The electronic control module (120) is configured to measure the temperature proximate the LCD (110) and control power and communication supplied to the LCD (110) based on the temperature at the LCD (110).
Abstract:
The present disclosure relates to an apparatus and a method for vaporizing a liquid to form vapor preferably in a gas stream. The apparatus includes a composite metal structure, the structure comprising a plurality of passageways for providing heat to vaporize the liquid in the gas stream to form a gas/vapor mixture. A non-corrosive interface lies between the metal structure and the gas/vapor mixture, the interface being chemically inert to the gas/vapor mixture and the structure permitting heat to be conducted rapidly therethrough to vaporize the liquid. The apparatus further includes an inlet for the gas and an inlet for the liquid to be vaporized to flow into the plurality of passageways and an exit through which the gas/vapor mixture exits the apparatus.
Abstract:
An error correction encoding device is provided that combines redundancy data with source data, said device including: at least three encoding stages and at least two permutation stages. Each encoding stage implements at least one set of three basic encoding modules, in which a first encoding stage receives said source data and a last encoding stage provides said redundancy data. Each encoding module implements a basic code and includes c inputs and c outputs, c being an integer. The permutation stages are inserted between two consecutive encoding stages and each permutation stage implements a c-cyclic permutation.
Abstract:
A method and apparatus are provided for creating a pilot channel in an opportunistic radio communication system whose frequency spectrum comprises a set of frequency bands and for which system the successive frames of a radio communication channel are divided into time intervals. The method includes the steps of: opportunistically selecting a free frequency band from the frequency spectrum, so as to support the pilot channel; sending a beacon signal over at least one time interval of the successive frames of the pilot channel and probing the free frequency band over at least one time interval distinct from the previous one.
Abstract:
A wireless power and communication unit for field devices is configured to connect to a field device and provide operating power and wired digital communication between the unit and the field device. RF circuitry in the unit is configured for radio frequency communication. In one embodiment, power supply circuitry in the unit includes one or more solar power cells that convert solar energy into electricity to power both the unit and the field device. The unit interacts with the field device in accordance with a standard industry communication protocol. The unit communicates wirelessly with an external device, such as a control room, based upon the interaction with the field device.
Abstract:
A method is described for treating gas exhaust from a polysilicon etch process, which uses a plasma abatement device to treat the gas. The device comprises a stainless steel gas chamber having a gas inlet for receiving the gas and a gas outlet. As the gas may contain a halocompound and water vapor, the chamber is heated to a temperature that inhibits adsorption of water on the surface within the chamber, thereby inhibiting corrosion of the gas chamber. The gas is then conveyed to the gas chamber for treatment, and the temperature of the chamber is maintained above said temperature during treatment of the gas.
Abstract:
A process fluid flow system is provided having an input, an output, and a plurality of fluid circuits disposed between the input and output. At least one valve is disposed to selectably cause process fluid to flow through either a first circuit of the plurality of circuits, or a second circuit of the plurality of circuits. Process fluid flows through the first circuit during normal production, and through the second circuit during process fluid sequestration. A process fluid flow measurement device is operably interposed between the input and output and configured to measure total flow through the system. A separator is disposed in the second circuit and is arranged to allow the process fluid to separate gravitationally over time into immiscible components of the process fluid, the separator having a known internal volume. A guided wave radar level measurement device is preferably disposed to measure heights of interfaces within the separator. A controller is coupled to at least one valve, the process fluid flow measurement system, and the guided wave radar level measurement device. The controller is configured to combine total process fluid flow information from the process fluid flow measurement device with measured height information from the guided wave level measurement device to provide fractional flow rates for at least one immiscible component of the process fluid.