摘要:
A method and system for specifying an area of interest in a 3D imaging system including a plurality of cameras that include at least first and second cameras wherein each camera has a field of view arranged along a camera distinct trajectory, the method comprising the steps of presenting a part at a location within the fields of view of the plurality of cameras, indicating on the part an area of interest that is within the field of view of each of the plurality of cameras, for each of the plurality of cameras: (i) acquiring at least one image of the part including the area of interest, (ii) identifying a camera specific field of interest within the field of view of the camera associated with the area of interest in the at least one image and (iii) storing the field of interest for subsequent use.
摘要:
A method and apparatus are provided for identifying differences between a stored pattern and a matching image subset, where variations in pattern position, orientation, and size do not give rise to false differences. The invention is also a system for analyzing an object image with respect to a model pattern so as to detect flaws in the object image. The system includes extracting pattern features from the model pattern; generating a vector-valued function using the pattern features to provide a pattern field; extracting image features from the object image; evaluating each image feature, using the pattern field and an n-dimensional transformation that associates image features with pattern features, so as to determine at least one associated feature characteristic; and using at least one feature characteristic to identify at least one flaw in the object image. The invention can find at least two distinct kinds of flaws: missing features, and extra features. The invention provides pattern inspection that is faster and more accurate than any known prior art method by using a stored pattern that represents an ideal example of the object to be found and inspected, and that can be translated, rotated, and scaled to arbitrary precision much faster than digital image re-sampling, and without pixel grid quantization errors. Furthermore, since the invention does not use digital image re-sampling, there are no pixel quantization errors to cause false differences between the pattern and image that can limit inspection performance.
摘要:
A method and apparatus are provided for rapidly refining a given approximate location of a pattern to produce a more accurate location. The invention employs a multi-dimensional space that includes translation, orientation, and scale. The invention can serve as a replacement for the fine resolution phase of any coarse-fine system for pattern location. Patterns and images are represented by a feature-based description that can be translated, rotated, and scaled to arbitrary precision much faster than digital image re-sampling, and without pixel grid quantization errors. Thus, accuracy is not limited by the ability of a grid to represent small changes in position, orientation, or size (or other degrees of freedom). The invention determines an accurate object pose from an approximate starting pose in a small, fixed number of increments that is independent of the number of dimensions of the space, and independent of the distance between the starting and final poses, provided that the starting pose is within the “capture range” of the true pose. Thus, accuracy need not be sacrificed to keep execution time acceptable for practical applications. Specifying locations in four or more dimensions will often result in better matches between the pattern and image than two-dimensional location systems, thereby improving accuracy. Accuracy is not degraded if some portion of the object is missing or occluded, or if unexpected extra features are present.
摘要:
A method for rapid determination of the position and/or orientation of a semiconductor device, electronic component or other object includes performing multiple times an operation of matching a pattern against an image. The matching operation finds the location, if any, of a respective pattern in the image and determines the degree of match. The position and orientation of the object is determined from the results of one of the matching operations, for example, from the operation that revealed the highest degree of match.
摘要:
Digital image processing methods are applied to an image of a semiconductor interconnection pad to preprocess the image prior to an inspection or registration. An image of a semiconductor pads exhibiting spatial patterns from structure, texture or features are filtered without affecting features in the image not associated with structure or texture. The filtered image is inspected in a probe mark inspection operation.
摘要:
A method and apparatus for inspection of probe marks made on the interconnection lands of semiconductor devices using machine vision is disclosed. An image of an interconnection land is analyzed, and features of the image that may constitute indicia of probe marks are refined through the application of a series of unique heuristic processes. The output of the method is measurement data that can be used to characterize and verify the processes used to electrically probe semiconductor devices.
摘要:
A method and apparatus are provided for identifying diffe rences between a stored pattern and a matching image subset, where variations in pattern position, orientation, and size do not give rise to false differences. The invention is also a system for analyzing an object image with respect to a model pattern so as to detect flaws in the object image. The system includes extracting pattern features from the model pattern; generating a vector-valued function using the pattern features to provide a pattern field; extracting image features from the object image; evaluating each image feature, using the pattern field and an n-dimensional transformation that associates image features with pattern features, so as to determine at least one associated feature characteristic; and using at least one feature characteristic to identify at least one flaw in the object image. The invention can find at least two distinct kinds of flaws: missing features, and extra features. The invention provides pattern inspection that is faster and more accurate than any known prior art method by using a stored pattern that represents an ideal example of the object to be found and inspected, and that can be translated, rotated, and scaled to arbitrary precision much faster than digital image re-sampling, and without pixel grid quantization errors. Furthermore, since the invention does not use digital image re-sampling, there are no pixel quantization errors to cause false differences between the pattern and image that can limit inspection performance.
摘要:
The invention provides a fast, computationally inexpensive, and highly accurate method and apparatus for edge detection in a digital image, even for edges that are not substantially parallel to the axes of the pixel grid, by exploiting computationally inexpensive estimates of gradient magnitude and direction. In particular, the method includes the steps of: estimating gradient magnitude and direction at a plurality of regularly-spaced pixel points in the image so as to provide a plurality of estimates of gradient magnitude and direction, each such estimate being associated with a respective gradient point of a regularly-spaced gradient grid; using gradient direction associated with each gradient point to select a respective set of neighboring gradient points; comparing gradient magnitude associated with each gradient point with each gradient magnitude of the respective set of neighboring gradient magnitudes so as to determine which of the gradient magnitudes is a local maximum in approximately the gradient direction; and using the local maximum of gradient magnitude and a set of neighboring gradient magnitudes to determine an interpolated edge position along a one-dimensional gradient magnitude profile. Another aspect of the invention for providing two-dimensional edge position interpolation further includes the step of determining a plane position line normal to the gradient direction of a gradient point associated with the local maximum of gradient magnitude, the plane position line also passing through the interpolated edge position, along which plane position line at least one two-dimensional interpolated position of the edge can be determined.
摘要:
A multiple field of view calibration plate is provided both for coordinating multiple fields of view of a plurality of cameras so as to facilitate determining the distance between features on a semiconductor wafer, each feature being disposed within a different field of view, and for correcting image distortion within each field of view. The multiple field of view calibration plate is particularly suited for use in semiconductor manufacturing, and includes a substantially rigid dimensionally-stable substrate having a systematic array of features that are sized such that more than one of the features can fit within a field of view. The array is of a spatial extent such that more than one of the fields of view are substantially filled with the features. Also, the systematic assay of features is characterized by a distribution density suitable for correcting image distortion within a field of view. The systematic array can be a regular array, each feature being separated from each nearest neighboring feature by an equal distance. Alternatively, the separation between neighboring features is a function of position on the substrate, so that given the relative location of two neighboring features, their position on the substrate can be deduced In addition, the substrate includes more than one landmark, each landmark being located at one of a plurality of possible camera positions, where the possible camera positions are of known relative position, so as to facilitate determining the distance between features each disposed within a different field of view.
摘要:
A method for training a pattern recognition algorithm including the steps of identifying the known location of the pattern that includes repeating elements within a fine resolution image, using the fine resolution image to train a model associated with the fine image, using the model to examine the fine image resolution image to generate a score space, examining the score space to identify a repeating pattern frequency, using a coarse image that is coarser than the finest image resolution image to train a model associated with the coarse image, using the model associated with the coarse image to examine the coarse image thereby generating a location error, comparing the location error to the repeating pattern frequency and determining if the coarse image resolution is suitable for locating the pattern within a fraction of one pitch of the repeating elements.