Abstract:
Providing for suppression of room temperature electronic drift in a flash memory cell is provided herein. For example, a soft program pulse can be applied to the flash memory cell immediately after an erase pulse. The soft program pulse can help to mitigate dipole effects caused by non-combined electrons and holes in the memory cell. Specifically, by utilizing a relatively low gate voltage, the soft program pulse can inject electrons into the flash memory cell proximate a distribution of uncombined holes associated with the erase pulse in order to facilitate rapid combination of such particles. Rapid combination in this manner reduces dipole effects caused by non-combined distributions of opposing charge within the memory cell, reducing room temperature program state drift.
Abstract:
Providing for suppression of room temperature electronic drift in a flash memory cell is provided herein. For example, a soft program pulse can be applied to the flash memory cell immediately after an erase pulse. The soft program pulse can help to mitigate dipole effects caused by non-combined electrons and holes in the memory cell. Specifically, by utilizing a relatively low gate voltage, the soft program pulse can inject electrons into the flash memory cell proximate a distribution of uncombined holes associated with the erase pulse in order to facilitate rapid combination of such particles. Rapid combination in this manner reduces dipole effects caused by non-combined distributions of opposing charge within the memory cell, reducing room temperature program state drift