Macrotexture map visualizing texture heterogeneity in polycrystalline parts

    公开(公告)号:US11047812B2

    公开(公告)日:2021-06-29

    申请号:US16530997

    申请日:2019-08-02

    发明人: Dongsheng Li

    摘要: This invention provides a method, system, and computer program to visualize texture (crystal orientation distribution) heterogeneity in polycrystalline aggregate part in large length scale. This is a critical representation step for microstructure characterization, useful in effective behavior simulation, risk analysis and hotspot identification. In contrast to orientation image map where each color component represents a crystal orientation, each color in this macrotexture map represents a set of texture. Different color represent different texture and similar texture shall have similar color. This method will provide a critical tool in evaluating texture heterogeneity of components, leading to a first-hand understanding of property heterogeneity and anisotropy. For an experienced user, these maps serve the same purpose in identifying high risk locations in the investigated component as medical imaging maps do for diagnosis purpose. This method will also serve as a starting point in mesoscale simulation with meshing sensitivity based on the texture heterogeneity. It will provide a bridge between texture characterization and behavior simulation of component with texture heterogeneity. This method will also offer a linkage between crystal plasticity simulation in small length scale and finite element/difference simulation in large length scale.

    Gas phase integrated multimaterial printhead for additive manufacturing

    公开(公告)号:US10357920B2

    公开(公告)日:2019-07-23

    申请号:US15859567

    申请日:2017-12-31

    摘要: Sputtering printheads, additive manufacturing systems comprising the same, and methods for additive manufacturing are provided. Sputtering printheads of the present invention use a plasma to sputter a feedstock material which is directed towards a target. A printhead can include a heater to heat the feedstock to, or near, the material's melting point as it is being sputtered to increase the deposition rate. A convergent nozzle can also increase the deposition rate. Printheads of the present invention are readily reconfigurable such that the same printhead can be used to deposit different materials, such as metals and non-metals, in succession by replacing the feedstock material and making changes to a few settings. Additive manufacturing systems of the present invention can be operated at normal room temperatures and pressure.

    Macrotexture Map Visualizing Texture Heterogeneity in Polycrystalline Parts

    公开(公告)号:US20190353602A1

    公开(公告)日:2019-11-21

    申请号:US16530997

    申请日:2019-08-02

    发明人: Dongsheng Li

    摘要: This invention provides a method, system, and computer program to visualize texture (crystal orientation distribution) heterogeneity in polycrystalline aggregate part in large length scale. This is a critical representation step for microstructure characterization, useful in effective behavior simulation, risk analysis and hotspot identification. In contrast to orientation image map where each color component represents a crystal orientation, each color in this macrotexture map represents a set of texture. Different color represent different texture and similar texture shall have similar color. This method will provide a critical tool in evaluating texture heterogeneity of components, leading to a first-hand understanding of property heterogeneity and anisotropy. For an experienced user, these maps serve the same purpose in identifying high risk locations in the investigated component as medical imaging maps do for diagnosis purpose. This method will also serve as a starting point in mesoscale simulation with meshing sensitivity based on the texture heterogeneity. It will provide a bridge between texture characterization and behavior simulation of component with texture heterogeneity. This method will also offer a linkage between crystal plasticity simulation in small length scale and finite element/difference simulation in large length scale.

    Gas Phase Integrated Multimaterial Printhead for Additive Manufacturing

    公开(公告)号:US20190329492A1

    公开(公告)日:2019-10-31

    申请号:US16445731

    申请日:2019-06-19

    摘要: Sputtering printheads, additive manufacturing systems comprising the same, and methods for additive manufacturing are provided. Sputtering printheads of the present invention use a plasma to sputter a feedstock material which is directed towards a target. A printhead can include a heater to heat the feedstock to, or near, the material's melting point as it is being sputtered to increase the deposition rate. A convergent nozzle can also increase the deposition rate. Printheads of the present invention are readily reconfigurable such that the same printhead can be used to deposit different materials, such as metals and non-metals, in succession by replacing the feedstock material and making changes to a few settings. Additive manufacturing systems of the present invention can be operated at normal room temperatures and pressure.

    System and Method for Continuous Fabrication of Graded Structured Units Using Additive Manufacturing

    公开(公告)号:US20220149411A1

    公开(公告)日:2022-05-12

    申请号:US17092503

    申请日:2020-11-09

    摘要: A system and method of continuous fabrication of multi-material graded structures using additive manufacturing is disclosed. Using multi-material feedstocks and optimized processing parameters, the gradient on composition and structure are controlled to achieve smooth transition from one functional component to another functional component. A multi-material graded structure is produced as the feedstocks are transported from the feedstock reservoir system comprised of many different materials. Interface transition from one functional layer to the next is gradient, controlled by feedstock mixture ratios based on the flow rate control for the feedstock system. Composition includes chemical composition, physical composition, and porosity. Continuous automatic additive manufacturing method makes the fabrication more efficient and avoids joining problems. This method finds application in fabrication of a fuel cell, battery, reformer and other chemical reaction and process units, including structures made of multiple units, such as stacks, that incorporate multiple functional components.

    Gas phase integrated multimaterial printhead for additive manufacturing

    公开(公告)号:US10800098B1

    公开(公告)日:2020-10-13

    申请号:US16826840

    申请日:2020-03-23

    摘要: Sputtering printheads, additive manufacturing systems comprising the same, and methods for additive manufacturing are provided. Sputtering printheads of the present invention use a plasma to sputter a feedstock material which is directed towards a target. A printhead can include a heater to heat the feedstock to, or near, the material's melting point as it is being sputtered to increase the deposition rate. A convergent nozzle can also increase the deposition rate. Printheads of the present invention are readily reconfigurable such that the same printhead can be used to deposit different materials, such as metals and non-metals, in succession by replacing the feedstock material and making changes to a few settings. Additive manufacturing systems of the present invention can be operated at normal room temperatures and pressure.

    Gas phase integrated multimaterial printhead for additive manufacturing

    公开(公告)号:US10596758B2

    公开(公告)日:2020-03-24

    申请号:US16445731

    申请日:2019-06-19

    摘要: Sputtering printheads, additive manufacturing systems comprising the same, and methods for additive manufacturing are provided. Sputtering printheads of the present invention use a plasma to sputter a feedstock material which is directed towards a target. A printhead can include a heater to heat the feedstock to, or near, the material's melting point as it is being sputtered to increase the deposition rate. A convergent nozzle can also increase the deposition rate. Printheads of the present invention are readily reconfigurable such that the same printhead can be used to deposit different materials, such as metals and non-metals, in succession by replacing the feedstock material and making changes to a few settings. Additive manufacturing systems of the present invention can be operated at normal room temperatures and pressure.