摘要:
A method of manufacturing a semiconductor device according to the present invention includes the steps of introducing first impurities of a first conductivity type into a main surface of a semiconductor substrate 1 to form a first impurity region, introducing second impurities of a second conductivity type to form a second impurity region, forming a first nickel silicide film on the first impurity region and forming a second nickel silicide film on the second impurity region, removing an oxide film formed on each of the first and second nickel silicide films by using a mixed gas having an NH3 gas and a gas containing a hydrogen element mixed therein, and forming a first conducting film on the first nickel silicide film and forming a second conducting film on the second nickel silicide film, with the oxide film removed.
摘要:
A barrier metal layer having a two-layer structure of a titanium film and a titanium nitride film is formed on the inner surface of a through hole. The titanium film and the titanium nitride film are formed on a main surface of an interlayer insulating film as well. In forming the barrier metal layer, a deposition device is used that is capable of high-directivity sputtering using a titanium target, and includes a substrate bias system biasing a semiconductor substrate to a high frequency voltage to attract sputter particles from the titanium target to the semiconductor substrate. This allows the titanium nitride film to be formed as an amorphous metal film.
摘要:
A method of manufacturing a semiconductor device according to the present invention includes the steps of introducing first impurities of a first conductivity type into a main surface of a semiconductor substrate 1 to form a first impurity region, introducing second impurities of a second conductivity type to form a second impurity region, forming a first nickel silicide film on the first impurity region and forming a second nickel silicide film on the second impurity region, removing an oxide film formed on each of the first and second nickel silicide films by using a mixed gas having an NH3 gas and a gas containing a hydrogen element mixed therein, and forming a first conducting film on the first nickel silicide film and forming a second conducting film on the second nickel silicide film, with the oxide film removed.
摘要:
A semiconductor device which includes a capacitor wherein the capacitance of the capacitor can be prevented from being lowered even in the case that the capacitor is miniaturized. A core insulating film having the core of the capacitor formed above a semiconductor substrate, a capacitor lower electrode formed so as to cover side surfaces of this core insulating film, a capacitor dielectric film formed so as to cover the surface of this capacitor lower electrode and the upper surface of the core insulating film and a capacitor upper electrode formed so as to cover the surface of this core insulating film are provided so that the bottom surface of the core insulating film is positioned lower than the bottom surface of the capacitor lower electrode.
摘要:
Referring to a capacitor having a capacitor dielectric film made of a high dielectric film, it is possible to obtain a method of manufacturing a semiconductor device capable of forming a fine storage node made of a noble metal. A polysilicon film is formed over a whole face of an interlayer insulating film (9), and is then subjected to anisotropic dry etching by using, as a mask, a resist having a predetermined opening pattern. Consequently, a polysilicon film (22a) is formed in contact with a plug layer (11). Next, a noble metal element is substituted for a silicon element contained in the polysilicon film (22a). Thus, it is possible to form a storage node (22) which has at least a surface made of the noble metal element and has the same three-dimensional configuration as the polysilicon film (22a) obtained before the substitution.
摘要:
By selectively anisotropically etching a stack film formed to cover a plurality of photodiodes and a gate electrode layer of a MOS transistor, the stack film remains on each of the plurality of photodiodes to form a lower antireflection coating and the stack film remains on a sidewall of the gate electrode layer to form a sidewall. Using the gate electrode layer and the sidewall as a mask, an impurity is introduced to form a source/drain region of the MOS transistor. After the impurity was introduced, an upper antireflection coating is formed at least on a lower antireflection coating. At least any of the upper antireflection coating and the lower antireflection coating is etched such that the antireflection coatings on the two respective photodiodes are different in thickness from each other.
摘要:
A method of manufacturing a semiconductor device according to the present invention includes the steps of introducing first impurities of a first conductivity type into a main surface of a semiconductor substrate 1 to form a first impurity region, introducing second impurities of a second conductivity type to form a second impurity region, forming a first nickel silicide film on the first impurity region and forming a second nickel silicide film on the second impurity region, removing an oxide film formed on each of the first and second nickel silicide films by using a mixed gas having an NH3 gas and a gas containing a hydrogen element mixed therein, and forming a first conducting film on the first nickel silicide film and forming a second conducting film on the second nickel silicide film, with the oxide film removed.
摘要:
A barrier metal film such as a TiN film is formed in a contact hole or a via hole. Then, a W nucleation film is formed on the barrier metal film by CVD that reduces WF6 gas with B2H6 gas. Subsequently, a W plug is formed as a contact plug or a via plug on the W nucleation film by CVD.
摘要翻译:在接触孔或通孔中形成诸如TiN膜的阻挡金属膜。 然后,通过用B 2 H 6气体减少WF 6气体的CVD在阻挡金属膜上形成W成核膜。 随后,通过CVD在W成核膜上形成W插塞作为接触塞或通孔塞。
摘要:
A method for manufacturing a capacitor is provided which can form a lower electrode having a high aspect ratio without suffering deterioration of the capacitor electric characteristics even when a platinum-group metal is adopted as the material of the lower electrode and a metal oxide having a high dielectric constant is adopted as the material of the dielectric film. Holes (8) that reach contact plugs (2) are formed in an insulating film (7). Then a dielectric film (9) is formed on the surfaces of the holes (8). Next the dielectric film (9) on the bottoms of the holes (8) are etched away to form holes (18) reaching the contact plugs (2). Lower electrodes (11) are then formed to fill the holes (8) and (18).
摘要:
An oxide dielectric film (7) is formed of barium strontium titanate to have a thickness of 300 to 600 Å, and a first platinum layer (81) is deposited thereon by, e.g., sputtering at a temperature not higher than 250° C. to have a thickness of 250 to 500 Å. Further, a second platinum layer (82) is deposited on the first platinum layer (81) by, e.g., sputtering at a temperature of 250 to 500° C. to have a thickness of 250 to 500 Å. Since the first platinum layer (81) has less grain boundary and is hard to connect to that of the second platinum layer (82), with less grain boundary diffusion caused, even if a hydrogen sintering of an aluminum interconnection layer (11) is performed, reduction species are unlikely to reach the oxide dielectric film (7) through the grain boundary. That suppresses deterioration of the oxide dielectric film (7) to avoid an increase of leak current therein. Moreover, since the surface area of the second platinum layer (82) increases, the adherence between the second platinum layer (82) and an interlayer insulating film (10) provided thereon is improved.