Abstract:
The control apparatus for an electric rotating machine includes a prediction section to predict a controlled variable of the electric rotating machine applied with an output voltage of a power conversion circuit for each of prescribed operation states of the power conversion circuit, and a manipulation section to manipulate the power conversion circuit to operate in one of the respective operation states determined as an actual operation state based on the controlled variable predicted by the prediction section. The control apparatus further includes an average voltage direction calculating section to calculate a direction of an average output voltage vector of the power conversion circuit. The manipulation section includes a priority setting section to set priority for each of the operation states based on the direction of the average output voltage vector calculated by the average voltage direction calculating section in determining the actual operation state.
Abstract:
The vehicle-use power supply control apparatus is for controlling transmission of electric power between a vehicle-mounted power supply apparatus including switching elements turned on and off in accordance with manipulation signals and an external power supply located outside the vehicle. The vehicle-use power supply control apparatus includes a control section to output an electric power transmission command signal depending on an electric power transmission request signal received from an external device, and a manipulation signal generating section to generate the manipulation signals based on the electric power transmission command signal received from the control section. The control section is configured to operate in order that noise sound generated due to switching operation of the vehicle-mounted power supply apparatus is within an audio frequency range.
Abstract:
In an apparatus, a first drive unit drives, in a first range of a voltage utilization factor, a switching member to thereby control an output voltage of the power converter to be matched with a command voltage. A second drive unit drives, in a second range of the voltage utilization factor, the switching member to thereby generate a value of a controlled variable of a rotary machine. The second range of the voltage utilization factor is higher than the first range thereof. An estimating unit estimates, during the switching member being driven by the second drive unit, a value of a parameter associated with the output voltage of the power converter. The estimated value is required for the first drive unit to generate the value of the controlled variable generated by the second drive unit.
Abstract:
A control device controls a power conversion circuit so as to adjust control values of a motor generator to optimum values. The power conversion circuit has switching elements for selectively connecting and disconnecting a battery and terminals of the motor generator. The control device sets a simulated voltage vector V(n+1) in one control-period forward to perform a prediction model control. On predicting a current, the control device uses a model in a rotary coordinate system, and sets the median value of the voltage vector V(n+1) in one control-period Tc to a value of the voltage vector V(n+1) in the rotary coordinate system. The control device sets, as the value of the voltage vector V(n+1) in the rotary coordinate system, the voltage vector V(n+1) when the half-time of the control-period Tc is elapsed from the time at the electric angle θ(n+1).
Abstract:
A complex fluid machine has an expansion-compressor device, a pump, and a motor generator, wherein the expansion-compressor device, the pump, and the motor generator are operatively connected and arranged in series, and a power transmitting device for disconnecting the pump from the motor generator, when the expansion-compressor device is driven by the motor generator so as to be operated as a compressor device.
Abstract:
The apparatus is for controlling a torque of an electric rotating machine at a command torque by supplying command voltages in accordance with the command torque to a power conversion circuit driving the electrical rotating machine. The apparatus includes a detecting function of detecting an input voltage of the power conversion circuit to be power-converted and thereafter applied to the electric rotating machine as a drive voltage, and a control function of setting a command current corresponding to one of two current components in a 2-phase coordinate system of the electric rotating machine in accordance with a command torque directed from outside, and thereafter determining command voltages corresponding to two voltage components of the 2-phase coordinate system on the basis of the command current and the input voltage of the power conversion circuit.
Abstract:
A magnetic pole position in a synchronous motor having salient poles is estimated from an instructed voltage applied to the motor, a current generated from the instructed voltage and parameters. To estimate the position substantially matching with a true magnetic pole position, a phase matching voltage having a phase matching with the estimated magnetic pole position previously obtained is applied to the motor. The phase matching voltage has a harmonic frequency higher than that of the instructed voltage. A phase matching current generated from the phase matching voltage is detected from the motor. A value of at least one of the parameters is corrected such that a difference in phase between the phase matching voltage and the phase matching current substantially becomes zero. An estimated magnetic pole position is calculated from the instructed voltage, the generated current and the parameter having the corrected value.
Abstract:
A complex fluid machine has an expansion-compressor device, a pump, and a motor generator, wherein the expansion-compressor device, the pump, and the motor generator are operatively connected and arranged in series, and a power transmitting device for disconnecting the pump from the motor generator, when the expansion-compressor device is driven by the motor generator so as to be operated as a compressor device.
Abstract:
Processes for producing antibacterial agents and intermediates useful in producing antibacterial agents are provided and include producing compound (VI-a) in accordance with the following reaction schema, as well as production intermediates thereof.
Abstract:
A control device has a predicting unit for predicting a first current flowing through a motor in a next control period, at a predicting time during a predetermined period after a change of switching state in an inverter by using a current detected before the change and for predicting a second current of a control period later than the next control period by one control period by using the predicted first current, a determining unit for determining a next operating state of the inverter by using the predicted second current and an instructed value so as to reduce a change of switching state in the change of the operating state, and a control unit for controlling the inverter to be set in the determined operating state in the next control period and controlling the current of the motor depending on the operating state of the inverter.