摘要:
Method of manufacturing an optical device, and an optical device, the optical device having one or more layers (13) of quantum-dots located in-between barrier layers (12). A spacer layer (15) is grown on a barrier layer (12), such that the spacer layer (15) is adapted for substantially blocking strain fields induced by quantum-dot layers, thereby producing a smooth growth front for a subsequent barrier layer (12).
摘要:
The field of the invention is that of optical devices comprising an integrated semi-conductor laser and an integrated optical isolator. These devices are used mainly in the field of digital telecommunications. More particularly, the invention applies to so-called absorption isolators whose complex index is non-reciprocal and depends on the direction of propagation of the light. Generally, integrated optical isolators of this type fulfill two functions. On the one hand, they comprise a magneto-optical layer ensuring the non-reciprocal effect and on the other hand an active zone ensuring the amplification of the laser beam, the injection of the charge carriers into the active zone being ensured by an electrical contact layer. The invention proposes, so as to limit the disturbing effects of the contact layer on the propagation of the laser beam, that the contact layer be eliminated above the active zone and that the injection of the charge carriers be ensured via the lateral faces and the edges of the upper face of the active zone.
摘要:
Method of manufacturing an optical device, and an optical device, the optical device having one or more layers (13) of quantum-dots located in-between barrier layers (12). A spacer layer (15) is grown on a barrier layer (12), such that the spacer layer (15) is adapted for substantially blocking strain fields induced by quantum-dot layers, thereby producing a smooth growth front for a subsequent barrier layer (12).
摘要:
The field of the invention is that of optoelectronic components with a buried stripe structure. The optoelectronic device according to the invention is a stripe structure, comprising at least one buried waveguide and a layer called a grating layer in the form of an elongate stripe comprising features, each feature having an approximately rectangular shape, the length of the feature being substantially perpendicular to the direction of the length of the stripe of the grating layer, said layer being placed so as to provide optical coupling with an optical wave propagating in the waveguide, the length of certain features being substantially less than the width of the waveguide.
摘要:
The field of the invention is that of optoelectronic components with a buried stripe structure. The optoelectronic device according to the invention is a stripe structure, comprising at least one buried waveguide and a layer called a grating layer in the form of an elongate stripe comprising features, each feature having an approximately rectangular shape, the length of the feature being substantially perpendicular to the direction of the length of the stripe of the grating layer, the layer being placed so as to provide optical coupling with an optical wave propagating in the waveguide, the length of certain features being substantially less than the width of the waveguide.
摘要:
The field of the invention is that of optical devices comprising an integrated semi-conductor laser and an integrated optical isolator. These devices are used mainly in the field of digital telecommunications. More particularly, the invention applies to so-called absorption isolators whose complex index is non-reciprocal and depends on the direction of propagation of the light. Generally, integrated optical isolators of this type fulfill two functions. On the one hand, they comprise a magneto-optical layer ensuring the non-reciprocal effect and on the other hand an active zone ensuring the amplification of the laser beam, the injection of the charge carriers into the active zone being ensured by an electrical contact layer. The invention proposes, so as to limit the disturbing effects of the contact layer on the propagation of the laser beam, that the contact layer be eliminated above the active zone and that the injection of the charge carriers be ensured via the lateral faces and the edges of the upper face of the active zone.