摘要:
An apparatus for mixing thermoplastic materials is provided. The apparatus includes a barrel and a screw rotatably mounted in the barrel. The screw has a screw shaft with a thread spirally extending around the screw shaft so as to form a plurality of flights, and the screw has a zone through which melted polymer conveyed. The screw has a portion that is without a screw thread where the screw shaft forms a mixing element with a drum-shaped surface extending above the screw shaft that is coaxial with the screw shaft. This drum-shaped surface has a plurality of alternating input grooves output grooves extending in a generally axial direction. Lands extend between the input grooves and output grooves so as to separate the input grooves from the output grooves, with the length of each land being substantially equal to the length of the contiguous portion of the adjacent input and output grooves. There is a land cross-sectional shear area corresponding to each land that is equal to the length of the land multiplied by the clearance between the land and the inside surface of the barrel hollow space, and the summation of the land cross-sectional shear areas for all of the lands of the mixing element is greater than or equal to 95% of the flow cross-sectional area between the adjacent flights of the screw through which polymer passes immediately prior to entering the mixing element.
摘要:
Prohibited radioactivity is removed from contaminated aqueous effluents containing both nitrate and radium values, by liquid/liquid extracting such effluents with an organic phase comprising at least one halogenated, preferably fluorinated .beta.-diketone.
摘要:
Rare earth and cobalt values are separated and recovered from residue materials containing them, e.g., the waste residues from the production of samarium/cobalt magnets, by (a) dissolving such residues with nitric acid, (b) liquid/liquid extracting the resulting aqueous nitric phase with an organic phase including at least one water-insoluble organic extractant having at least one primary, secondary, tertiary or quaternary amine function, whereby the rare earth values are transferred into the organic phase, and (c) recovering the rare earth values from the organic phase.
摘要:
A slipper for a ski boot produced by injection of a foam mixture of plastic material between the walls of two socks placed upon a form set in a mold, the outer of the two socks comprising a very thin, extensible sheet having the same dimensions as the inner sock when the two are in unstressed condition.
摘要:
Highly pure (>99.99%) aqueous solutions of gallium chloride are obtained by (i) liquid/liquid extracting an aqueous hydrochloric acid solution of gallium values with an organic phase which comprises an alcohol extractant, (ii) separating the organic phase from the aqueous phase, (iii) selectively washing said organic phase by intimately contacting same with water or with an aqueous solution of hydrochloric acid, (iv) next transferring the purified gallium values from said organic phase into an aqueous solution thereof, and (v) thence separating said organic phase from said resulting aqueous phase, whereby said aqueous phase comprises pure gallium chloride.
摘要:
Rare earth and cobalt values are separated and recovered from residue materials containing them, e.g., the waste residue from the production of samarium/cobalt magnets, by (a) dissolving such residues with nitric acid, (b) liquid/liquid extracting the resulting aqueous nitric phase with an organic phase including at least one water-insoluble neutral organophosphoric extractant, whereby the rare earth values are transferred into the organic phase, and (c) recovering the rare earth values from the organic phase.
摘要:
The method of recovering gallium from very basic solutions such as sodium aluminum liquors from the Bayer process by liquid/liquid extraction by means of an organic phase, preferably formed of an organic solvent and water-insoluble alkylhydroxyquinolines of the general formula ##STR1## in which n is a number between 5 and 20.
摘要:
Acidic aqueous phases comprising sulfate ion and particularly sulfuric acid values, titanium ion and particularly titanium (IV) values, and iron ion, particularly iron (II) values, and advantageously waste streams emanating from a sulfate process for the production of TiO.sub.2, are extracted with an initial organic phase which comprises at least one neutral organic extractant having the general formula: ##STR1## in which A and B, which may be the same or different, are the groups R.sub.1 or OR.sub.2, wherein R.sub.1 and R.sub.2 are straight or branched chain alkyl, alkenyl, alkynyl, alkoxyalkyl, aryl or alkylaryl radicals, or halogen substituted such radicals; and R is either R.sub.1 or R.sub.2 as above-defined, with R, R.sub.1 and R.sub.2 either being the same or different, or R is a group having the general formula: ##STR2## in which Y is a straight or branched chain alkylene radical, and A and B are as defined above, to provide a final aqueous phase comprising substantially all of said iron (II) values present in said initial aqueous phase and a final organic phase comprising substantially all of said sulfuric acid values and substantially all of said titanium values present in said initial aqueous phase; the respective iron/sulfate/titanium values may then be facilely recovered from their respective final phases.
摘要:
A process is provided for separating, by solvent extraction, metal compounds contained in aqueous solutions. The aqueous solution is contacted with an organic phase containing at least one substituted hydroquinoline. The process of the invention is particularly applicable to the separation of at least one element selected from among the group consisting of the rare earths and yttrium from an aqueous solution containing it.
摘要:
The recovery of gallium present in aqueous solution which may also contain a compound of aluminum and sodium, in which the aqueous solution is contacted with a substituted hydroxyquinoline in solution in an organic solvent immiscible with water and under highly alkaline conditions whereby gallium and sodium and aluminum, when present, go into the organic phase, and in which the gallium can be separated from the sodium and aluminum by contacting the organic phase with a concentrated dilute solution of an inorganic acid to remove sodium and aluminum from the organic phase and then contacting the remaining organic phase with a more concentrated solution of inorganic acid to remove the gallium.