Abstract:
A method of separating a metal from a solution comprises adding to the solution a compound having a structure represented by Formula (I): wherein: R1, R2, R3 and R4 are each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted C1-C8 hydrocarbyl group: and Z is a C2-C6 hydrocarbyl group or an aryl group.
Abstract:
Method of separation of a radiometal ion from a target metal ion, comprising a first liquid-liquid extraction step in which an organic phase comprising an extractant and an interfacial tension modifier is mixed with an aqueous phase comprising the radiometal ion and the target metal ion in order that the radiometal ion is at least partially transferred to the organic phase, followed by a first phase separation step, wherein the phase separation is carried out in flow comprising the use of a microfiltration membrane to separate the phases based on the interfacial tension between the phases such that a permeate phase passes through the membrane and a retentate phase does not.
Abstract:
Compositions and methods are provided that provide recovery of metals such as copper, nickel, cobalt, indium, and other metals are recovered from mine tailings, in situ ore bodies, or postconsumer waste. An amine-containing lixiviant is utilized to generate an aqueous solution of the desired metal from insoluble salts present in the source material. Metals can be recovered and further purified by various processes, including extraction into an immiscible organic solvent, electrowinning, crystallization, and chemical reduction. Spent lixiviant can be regenerated and recycled back into the metal recovery process.
Abstract:
A method for recycling copper indium gallium selenium materials comprises the steps of sulphating roasting, acid dissolution, extraction and electrolysis of metal copper, production of a gallium hydroxide deposition, replacement of indium, and the like. In the method, deselenization is carried by using sulphating roasting, and residues after roasting are oxidizing slags capable of being directly subjected to acid dissolution, thereby reducing acid gas pollution; in addition, copper is extracted by using a copper extractant, the separation effect is good and costs are low, the extracted copper can be directly electrolyzed, so as to obtain high-purity metal copper; and in another aspect, in the method, alkali separation of gallium is carried out, separation between indium and gallium can be implemented by merely adjusting the pH of a solution, thereby resolving the problem of co-extraction in the extraction of indium and gallium and the separation between indium and gallium, the separation effect is good, the purities of obtained indium and gallium products are high.
Abstract:
The ability to generate complex gallium alloys using metal amides, Ga(NR2)3 and M(NR2)n, is easily accomplished by heating the two metal amides in predetermined ratios. The product can be isolated as GaxMy where x and y can vary.
Abstract:
The present disclosure relates to a process for purifying and concentrating 68Ga isotope produced by the irradiation with an accelerated particle beam of a 68Zn target in solution. The process according to the present disclosure allows for the production of pure and concentrated 68Ga isotope in hydrochloric acid solution. The present disclosure also relates to a disposable cassette for performing the steps of purification and concentration of the process.
Abstract:
A hydrometallurgical process for recovery of metals and/or semimetals from waste materials, such as high-tech or green-tech wastes, and/or electrical and electronic waste containing compound semiconductor materials and/or back contact materials and/or transparent electrically conducting oxides (TCOs), wherein the waste materials according to the invention are mixed thoroughly with a reaction solution of water, 1 to 5% by mass sodium bisulphate and 1-5% by mass sodium chlorite or with a reaction solution of water, 1 to 50% by mass organosulphonic acid and in the stoichiometric ratio to the organosulphonic acid 1-5% by mass of an oxidizing agent, and the metals and/or semimetals that are to be recovered are dissolved.
Abstract:
This application discloses the method for separating element or isotopes such as protactinium and gallium and isotopes thereof from a corresponding mixture which method comprises contacting the mixture with a carbon-based separation material, wherein the carbon-based separation material selectively associates with the element or isotope thereof.
Abstract:
The present invention relates to a hydrometallurgical process for recovery of metals and/or semimetals from waste materials, such as high-tech or green-tech wastes, and/or electrical and electronic waste containing compound semiconductor materials and/or back contact materials and/or transparent electrically conducting oxides (TCOs), wherein the waste materials according to the invention are mixed thoroughly with a reaction solution of water, 1 to 5% by mass sodium bisulphate and 1-5% by mass sodium chlorite or with a reaction solution of water, 1 to 50% by mass organosulphonic acid and in the stoichiometric ratio to the organosulphonic acid 1-5% by mass of an oxidizing agent, and the metals and/or semimetals that are to be recovered are dissolved.
Abstract:
To concentrate metals such as gallium from ore which is extracted from mines or used electronic components while suppressing the quantity of waste liquid generated is difficult. A first solid metal compound which contains a metal selected from a group consisting of gallium, indium, germanium, tellurium, and cesium at a first metal content in a mixture of the first solid metal compound is reduced to form a gaseous metal compound, the gaseous metal compound is oxidized to form a second solid metal compound, and the second solid metal compound is collected at a second metal content which is higher than the first metal content.