摘要:
A method and signal therfor embodied in a carrier wave for sending information from transmit stations to receive stations over a transmission medium of a frame-based communications network. The information is sent in transmit frames having a frame format comprising a fixed rate header, followed by a variable rate payload, followed by a fixed rate trailer. The fixed rate header includes a preamble. The preamble has a repetition of four symbol sequences for facilitating power estimation, gain control, baud frequency offset estimation, equalizer training, carrier sensing and collision detection. The preamble also includes a frame control field. The frame control field has scrambler control information for frame scrambling initialization, a priority field to determine the absolute priority a transmit frame will have when determining access to the transmission medium, a payload encoding field which determines constellation encoding of payload bits in the variable rate payload, and a header check sequence for providing a cyclic redundancy check. The variable rate payload is transmitted pursuant to dynamic adjustable frame encoding parameters for improving transmission performance for a transmit frame being transmitted from a transmitting station to a receiving station. The header also includes a destination address field, a source address field and an ethertype field.
摘要:
A system for processing a data packet is disclosed and may include at least one processor that enables receiving of a data packet at a station on a network, the data packet having a preamble which includes a destination tag and a training sequence. The at least one processor may enable obtaining a channel model using the training sequence, and encoding each of one or more addresses that the station receives with the channel model to produce a result. The at least one processor may also enable comparing the result with the destination tag. The at least one processor may enable convolving of each of the one or more addresses that the station receives with the channel model to produce the result.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
A method for selecting frame encoding parameters to improve transmission performance for a transmitting frame being transmitted from a transmitting station to a receiving station over a transmission medium of a frame-based communications network is provided, the transmitting frame having a header segment and a payload segment, the header segment being transmitted using a fixed set of encoding parameters such that the header segment can be received and decoded by all stations on the network, the payload segment being transmitted using a variable set of payload encoding parameters, the transmitting station sending the transmitting frame using one set of the variable set of payload encoding parameters at a time. The receiving station receives and decodes the header and payload segments of each transmitting frame. The decoding includes computing frame statistics. A plurality of sets from the variable set of payload encoding parameters are selected to form a possible set of payload encoding parameters. For each set of payload encoding parameters in the possible set of payload encoding parameters an estimate of network performance characteristics expected if the transmitting station were to transmit the transmitting frame using that set of payload encoding parameters is generated based upon the frame statistics. A set of payload encoding parameters having optimized network performance characteristics is selected based upon the estimates of expected network performance for each set of payload encoding parameters in the possible set of payload encoding parameters.
摘要:
A method for selecting frame encoding parameters to improve transmission performance for a transmitting frame being transmitted from a transmitting station to a receiving station over a transmission medium of a frame-based communications network, the transmitting frame having a header segment and a payload segment, the header segment being transmitted using a fixed set of encoding parameters such that the header segment can be received and decoded by all stations on the network, the payload segment being transmitted using a variable set of payload encoding parameters, the transmitting station sending the transmitting frame using one set of the variable set of payload encoding parameters at a time. The receiving station receives and decodes the header and payload segments of each transmitting frame. The decoding includes computing frame statistics. A plurality of sets are selected from the variable set of payload encoding parameters to form a possible set of payload encoding parameters. For each set of payload encoding parameters in the possible set of payload encoding parameters, an estimate of network performance characteristics expected if the transmitting station were to transmit the transmitting frame using that set of payload encoding parameters is generated based upon the frame statistics. A set of payload encoding parameters having optimized network performance characteristics is selected based upon estimates of expected network performance for each set of payload encoding parameters in the possible set of payload encoding parameters. The frame statistics include a slicer maximum squared error for the header segment and a slicer maximum squared error for the payload segment.
摘要:
A method of determining an end of a transmitted frame at a receiver on a frame-based communications network. An end of frame format for the transmitted frame is provided having an end of frame plurality of symbols. A received transmitted frame is filtered using filter coefficients matched to the end of frame plurality of symbols to provide a correlation sequence low-pass filtered signal. A squared magnitude of the correlation sequence is computed. The squared magnitude of the correlation sequence is low-pass filtered to provide a low-pass filtered correlation signal. The low-pass filtered correlation signal is delayed to provide a delayed low-pass filtered correlation signal. The delayed low-pass filtered correlation signal is multiplied by a fixed predetermined threshold to provide a multiplied correlation signal. The multiplied correlation signal is compared with the low-pass filtered correlation signal to provide a match/no match comparison indicative of the possible end of a transmitted frame.