Abstract:
A fireplace installation is disclosed herein. In one embodiment, a fireplace installation includes a fireplace installation accessory having a recess and a fireplace unit positioned in the recess. The fireplace installation also includes a sound system positioned within the fireplace installation. The sound system includes an amplifier, one or more speakers, and a connector for connecting to a music player.
Abstract:
A burner assembly that overcomes problems experienced in the prior art. One embodiment provides a burner assembly for burning a fuel gas from a gas source. The assembly has a burner body with a contoured upper surface and a burner pan with a gas inlet aperture therein. The burner body is connected to the burner pan. The burner body and burner pan are spaced apart to form a gas distribution chamber therebetween. The burner body has a plurality of gas apertures extending between the distribution chamber to an upper surface of the burner body. The gas apertures are positioned to allow the fuel gas to flow to selected areas on the burner body's upper surface for combustion to create a desired flame at selected locations relative to the upper surface. In one embodiment is a contoured upper surface with a plurality of peaks and valleys forming simulated coal or ember members.
Abstract:
A biomass-burning fireplace assembly with a hopper and an outlet adjacent to the hopper outlet. A fuel metering assembly is adjacent to the hopper outlet and the barrier member. The fuel metering assembly has a fuel metering receptacle that receives the biomass fuel from the hopper. The fuel metering receptacle is moveable relative to the hopper between first and second positions on opposite sides of the barrier member. The barrier member is a physical barrier between the fuel metering receptacle and the hopper outlet when in the second position. A fuel feed assembly receives fuel from the fuel metering receptacle when is in the second position. The fuel feed assembly moves the fuel onto a burn platform assembly coupled to the firebox adjacent to the fuel inlet opening.
Abstract:
A fireplace assembly having a firebox, an igniter assembly coupled to the firebox and containing a heating element, a first portion of the igniter assembly extending through an aperture in a firebox wall, the igniter assembly having a first connector coupled to the heating element and coupleable to power source, and having a second connector coupleable to an air source and positioned to provide air flow through the igniter assembly over the heating element and into the firebox. A controller is operatively coupled to the igniter assembly and a temperature sensor. The controller controls operation of the heating element, the temperature sensor, and the air flow through the igniter assembly, and can activate and deactivate the igniter assembly based upon the temperature within the firebox.
Abstract:
A hybrid wood-burning fireplace assembly configured for burning wood-based fuel, wherein the burning generates combustion exhaust. The assembly comprising a fire box having an interior area, a baffle in the interior area defining lower and upper combustion chambers relative to the baffle. The upper combustion chamber has an upper exhaust passageway between baffle and the top portion of the firebox. A secondary combustion airway has air outlets in the firebox that direct the secondary combustion air adjacent to the baffle to mix with the exhaust for non-catalytic secondary combustion of the exhaust before the exhaust flows through the upper exhaust passageway. A catalytic combustion unit is positioned above the baffle and across the upper exhaust passageway, whereby the exhaust will pass through the catalytic combustion unit after the non-catalytic secondary combustion of the exhaust and before the exhaust exits the upper combustion chamber through the upper exhaust passageway.
Abstract:
Torch lamp systems and flame lamp assemblies for producing swirling flames are disclosed herein. In one embodiment, a flame lamp assembly for providing a flame having a continuous spiral movement can include a plurality of spaced apart panels and a frame for supporting the panels to form a chamber for housing the flame. The frame can support the panels such that adjacent panels are spaced apart at panel junctions to create a plurality of air intake slots. The plurality of air intake slots can be in communication with the chamber to allow air to flow from an external environment into the chamber at an angle to provide vortical air flow within the chamber. The assembly can also include a burner assembly configured to receive fuel from a fuel source and to provide a fuel flow from a fuel release point to the chamber for ignition to provide the flame.
Abstract:
A burner assembly that overcomes problems experienced in the prior art. One embodiment provides a burner assembly for burning a fuel gas from a gas source. The assembly has a burner body with a contoured upper surface and a burner pan with a gas inlet aperture therein. The burner body is connected to the burner pan. The burner body and burner pan are spaced apart to form a gas distribution chamber therebetween. The burner body has a plurality of gas apertures extending between the distribution chamber to an upper surface of the burner body. The gas apertures are positioned to allow the fuel gas to flow to selected areas on the burner body's upper surface for combustion to create a desired flame at selected locations relative to the upper surface. In one embodiment is a contoured upper surface with a plurality of peaks and valleys forming simulated coal or ember members.
Abstract:
A fireplace assembly with an integrated burn control system includes a variety of features that provide an elegant, revolutionary, and highly-efficient way to heat a residence or other environment. The fireplace assembly may be used in combination with gas-burning fireplaces, stoves, and fireplace inserts. The fireplace assembly includes, but is not limited to: a control panel; a concealment door that conceals the control panel when the concealment door is closed; automatic control panel lighting that is activated when the concealment door is open; a split flow or dual burner assembly that simulates a natural wood burning fire; and an intermittent pilot ignition system that allows a pilot flame to run continuously or intermittently. The fireplace assembly can be manually controlled via the control panel or automatically and/or remotely controlled via a remote control device.
Abstract:
A biomass-burning fireplace assembly with a hopper and an outlet adjacent to the hopper outlet. A fuel metering assembly is adjacent to the hopper outlet and the barrier member. The fuel metering assembly has a fuel metering receptacle that receives the biomass fuel from the hopper. The fuel metering receptacle is moveable relative to the hopper between first and second positions on opposite sides of the barrier member. The barrier member is a physical barrier between the fuel metering receptacle and the hopper outlet when in the second position. A fuel feed assembly receives fuel from the fuel metering receptacle when is in the second position. The fuel feed assembly moves the fuel onto a burn platform assembly coupled to the firebox adjacent to the fuel inlet opening.