摘要:
A combustor and injector system to inject a selected fuel into a combustor of a gas powered turbine. Generally, the injector is able to inject a selected fuel into a stream of an oxidizer to substantially mix the fuel with the oxidizer stream before any of the fuel in the fuel fan reaches an auto ignition temperature. Therefore the fuel may be substantially combusted at once and without any substantial hot spots.
摘要:
Methods and apparatus are provided for a lightweight heat rejection system suitable for spacecraft applications. The apparatus comprises a manifold configured with an array of heat pipes in thermal contact with a manifold coolant. The heat pipes transfer the coolant heat to associated bumper/radiators external to the manifold. The bumper/radiators are fabricated from a lightweight thermally conductive foam material. The bumper portion protects the heat pipe from space debris and the radiator portion dissipates the heat transferred from the heat pipe through the bumper to the radiator portion. The foam bumper/radiator can be cast over the heat pipe in a relatively simple and economical manufacturing process.
摘要:
A combustor and injector system to inject a selected fuel into a combustor of a gas powered turbine. Generally, the injector is able to inject a selected fuel into a stream of an oxidizer to substantially mix the fuel with the oxidizer stream before any of the fuel in the fuel fan reaches an auto ignition temperature. Therefore the fuel may be substantially combusted at once and without any substantial hot spots.
摘要:
The present embodiment relates to a catalytic combustor for reducing the pollutant emissions of combustion. The catalytic combustor described herein employs a novel heat exchange system for rapidly and economically bringing the combustor to a temperature wherein catalytic combustion may occur with minimal production of toxic products.
摘要:
Methods and apparatus are provided for a lightweight heat rejection system suitable for spacecraft applications. The apparatus comprises a manifold configured with an array of heat pipes in thermal contact with a manifold coolant. The heat pipes transfer the coolant heat to associated bumper/radiators external to the manifold. The bumper/radiators are fabricated from a lightweight thermally conductive foam material. The bumper portion protects the heat pipe from space debris and the radiator portion dissipates the heat transferred from the heat pipe through the bumper to the radiator portion. The foam bumper/radiator can be cast over the heat pipe in a relatively simple and economical manufacturing process.
摘要:
Methods and apparatus are provided for a shield to protect a surface from the impact of hyper-velocity projectiles. The apparatus comprises a foam material that is configured to cover the surface to be protected and is attached directly to that surface. A coating material is typically disposed on the outer surface of the foam material and may penetrate the foam material to a predetermined depth. The foam material and the coating material are selected to form a composite having predetermined values of sonic velocity, toughness, and thermal conductivity. The composite of foam material and coating material can be significantly lighter in weight than a metal shield having equivalent protective characteristics.