Abstract:
Embodiments of a distributed memory controller system implemented on a single integrated circuit device are described. In one embodiment, a memory controller that provides an interconnection circuit between a first plurality of memory devices to a second plurality of memory clients includes a ring bus to route at least one of the memory request and data return signals between the memory clients and the memory devices. The ring bus is configured in a ring topography that is distributed across a portion of an integrated circuit device, resulting in a reduction in the maximum wiring density at the center of memory controller. The ring bus structure also reduces the overall number of interconnections as well as the number of storage elements, thus reducing the total area used by the memory controller. The ring bus couples memory clients that are physically located within the ring topography on the integrated circuit to external memory devices through memory device interface circuits located on the integrated circuit device. The memory controller also includes deadlock avoidance mechanisms that utilize virtual channels on the ring bus for one or more defined types of bus traffic.
Abstract:
Embodiments of a distributed memory controller system implemented on a single integrated circuit device are described. In one embodiment, a memory controller that provides an interconnection circuit between a first plurality of memory devices to a second plurality of memory clients includes a ring bus to route at least one of the memory request and data return signals between the memory clients and the memory devices. The ring bus is configured in a ring topography that is distributed across a portion of an integrated circuit device, resulting in a reduction in the maximum wiring density at the center of memory controller. The ring bus structure also reduces the overall number of interconnections as well as the number of storage elements, thus reducing the total area used by the memory controller. The ring bus couples memory clients that are physically located within the ring topography on the integrated circuit to external memory devices through memory device interface circuits located on the integrated circuit device. The memory controller also includes deadlock avoidance mechanisms that utilize virtual channels on the ring bus for one or more defined types of bus traffic
Abstract:
An apparatus and a method for providing decoded information, the apparatus comprising: a memory module for storing encoded information; a decoder, coupled to the memory module, for fetching and decoding encoded information and for providing decoded information; and a cache, coupled to the memory module and to the decoder and to a recipient of decoded information, the cache is adapted to store at least one set of decoded information, to be provided to the recipient of information after a cache check condition is fulfilled and a cache hit occurs. A cache check condition is fulfilled when a change of flow occurs.
Abstract:
An integrated circuit is provided that includes an execution engine and a memory controller. The execution engine is clocked at a first rate and the memory controller is clocked at a second rate that is less than the first rate. Pins on the integrated circuit can transfer data to and from the integrated circuit on both the rising and falling edges of a second clock transitioning at the second clock rate. The integrated circuit is preferably packaged using a lead frame and wire bonds extending from pads on the integrated circuit to corresponding leads. The leads are secured to trace conductors on a surface of a printed circuit board. The board contains no more than two conductive layers separated by a dielectric layer. Thus, an overall electronic system is formed having a board with no more than two conductive layers, an execution engine that receives a first clock signal, a memory controller which receives a second clock signal, and a memory device that sends data to and from the memory controller at twice the rate of the second clock signal. Using a throttled second clock signal allows for less expensive packaging and mounting of packaged integrated circuits on a less expensive PCB, while still maintaining use of a DDR DRAM transfer mechanism.
Abstract:
A device and method for performing high speed low overhead context switch, and especially in processors that handle multilevel nested tasks. The device handles forward requests and backward requests. The device is coupled to a central processing unit and has plurality of register files and a direct memory access mechanism that allows a processor to respond to a forward request by starting to handle a higher priority task using a first register file while transferring the halted task context from the second register file to a context save area within a memory module. The processor responds to a backward request by using the context that is stored in a first register file, while transferring to the second register file a lower priority task context.
Abstract:
Embodiments of a distributed memory controller system implemented on a single integrated circuit device are described. In one embodiment, a memory controller that provides an interconnection circuit between a first plurality of memory devices to a second plurality of memory clients includes a ring bus to route at least one of the memory request and data return signals between the memory clients and the memory devices. The ring bus is configured in a ring topography that is distributed across a portion of an integrated circuit device, resulting in a reduction in the maximum wiring density at the center of memory controller. The ring bus structure also reduces the overall number of interconnections as well as the number of storage elements, thus reducing the total area used by the memory controller.
Abstract:
An integrated circuit is provided that includes an execution engine and a memory controller. The execution engine is clocked at a first rate and the memory controller is clocked at a second rate that is less than the first rate. Pins on the integrated circuit can transfer data to and from the integrated circuit on both the rising and falling edges of a second clock transitioning at the second clock rate. The integrated circuit is preferably packaged using a lead frame and wire bonds extending from pads on the integrated circuit to corresponding leads. The leads are secured to trace conductors on a surface of a printed circuit board. The board contains no more than two conductive layers separated by a dielectric layer. Thus, an overall electronic system is formed having a board with no more than two conductive layers, an execution engine that receives a first clock signal, a memory controller which receives a second clock signal, and a memory device that sends data to and from the memory controller at twice the rate of the second clock signal. Using a throttled second clock signal allows for less expensive packaging and mounting of packaged integrated circuits on a less expensive PCB, while still maintaining use of a DDR DRAM transfer mechanism.