摘要:
The present invention provides methods for sequencing and genotyping of DNA useful for analysis of samples in which the target DNA represents a small portion (e.g., 10-1000-fold less) that a contaminating DNA source. Accordingly, the methods described herein are useful for sequencing or genotyping pathogen DNA, such as malaria DNA, in clinical samples taken from infected subjects.
摘要:
The disclosed Hi-C protocol can identify genomic loci that are spatially co-located in vivo. These spatial co-locations may include, but are not limited to, intrachromosomal interactions and/or interchromosomal interactions. Hi-C techniques may be applied to many different scales of interest. For example, on a large scale, Hi-C techniques can be used to identify long-range interactions between distant genomic loci.
摘要:
The invention provides methods for determining the activity of a plurality of nucleic acid regulatory elements. These methods may facilitate, e.g., the systematic reverse engineering, and optimization of mammalian cis-regulatory elements at high resolution and at a large scale. The method may include integration of multiplexed DNA synthesis and sequencing technologies to generate and quantify the transcriptional regulatory activity of e.g., thousands of arbitrary DNA sequences in parallel in cell-based as says (e.g., mammalian cell based assays).
摘要:
The disclosed Hi-C protocol can identify genomic loci that are spatially co-located in vivo. These spatial co-locations may include, but are not limited to, intrachromosomal interactions and/or interchromosomal interactions. Hi-C techniques may be applied to many different scales of interest. For example, on a large scale, Hi-C techniques can be used to identify long-range interactions between distant genomic loci.