Abstract:
An electrode and a DEL capacitor formed therewith. The electrode will typically be a polarizable electrode comprised of an activated carbon material having a substantially zero ash percentage and a low percentage of transition metals. In constructing a DEL capacitor employing the electrode of the present invention, a non-polarizable electrode consisting of a lead dioxide/lead sulfate compound is preferably also used. The DEL capacitor may utilize an acid-based electrolyte, such as an aqueous sulfuric acid electrolyte. Consequently, the present invention also includes a current collector that preferably comprises a base material consisting of lead or a lead compound and a protective coating material that is resistant to an acid-based electrolyte. Preferably, the protective coating material is formed from a polymer base and a conductive dope that may thereafter be applied to the current collector base material by a variety of methods.
Abstract:
A system and method for directing the object, such as a semiconductor die. The system includes a first images such as a scanning electron microscope, a stage for moving the object and a second imager and miller such as a focused ion beam generator. The object is images to locate a desired location in which the object is to be milled and a landmark that is utilized for directing the miller. The system can include additional steps of milling, analyzing and movement of the object.
Abstract:
The present teachings relate to various embodiments of a gas enclosure system that can have various components comprising a particle control system that can provide a low-particle zone proximal to a substrate. Various components of a particle control system can include a gas circulation and filtration system, a low-particle-generating motion system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. In addition to maintaining substantially low levels for each species of various reactive species, including various reactive atmospheric gases, such as water vapor and oxygen, for various embodiments of a gas enclosure system that have a particle control system, an on-substrate particle specification can be readily met. Accordingly, processing of various substrates in an inert, low-particle gas environment according to systems and methods of the present teachings can have substantially lower manufacturing defects.