Abstract:
A sensor system has a least one voltage generator for conversion of non-electrical energy to electrical energy. At least one energy store is connected downstream from the voltage generator. At least one voltage converter is connected to the energy store such that its output signal is suitable for operation of a processor controller. At least one sensor is provided, and at least one transmitter enables wire-free transmission of transmission messages produced by the processor controller and containing at least one measured value from the at least one sensor. A timer circuit is triggered as a function of a voltage level of the at least one energy store, and activates the sensor system to transmit at least one transmission message after a specific time interval.
Abstract:
A sensor system (S, S′) having a least one voltage generator (1, 11, 12, 13) for conversion of non-electrical energy to electrical energy. At least one energy store (2) is connected downstream from the voltage generator (1, 11, 12, 13). At least one voltage converter (3) is connected to the energy store (2) such that its output signal is suitable for operation of a processor controller (4). At least one sensor (7, 71) is provided, and at least one transmitter (5) enables wire-free transmission of transmission messages which can be produced by the processor controller (4) and which contain at least one measured value from the at least one sensor (7, 71). A timer circuit (6) is provided, which can be triggered as a function of a voltage level of the at least one energy store (2), and which activates the sensor system (S) in order to transmit at least one transmission message after a specific time interval.
Abstract:
An apparatus for conversion of mechanical energy to electrical energy by means of a piezo transducer (1), on which an electrical voltage, which can be supplied to a load (8), is formed when deformation occurs. The piezo transducer (1) is formed from two or more layers (2) of piezoelectric material, which are separated from one another by electrically conductive layers (10, 11), and the successive electrically conductive layers (10, 11) are alternately connected to common electrical contacts (13, 14).
Abstract:
A sensor system (S, S′) having a least one voltage generator (1, 11, 12, 13) for conversion of non-electrical energy to electrical energy. At least one energy store (2) is connected downstream from the voltage generator (1, 11, 12, 13). At least one voltage converter (3) is connected to the energy store (2) such that its output signal is suitable for operation of a processor controller (4). At least one sensor (7, 71) is provided, and at least one transmitter (5) enables wire-free transmission of transmission messages which can be produced by the processor controller (4) and which contain at least one measured value from the at least one sensor (7, 71). A timer circuit (6) is provided, which can be triggered as a function of a voltage level of the at least one energy store (2), and which activates the sensor system (S) in order to transmit at least one transmission message after a specific time interval.
Abstract:
The present embodiments relate to a local coil system for a magnetic resonance system. The local coil system includes at least one local coil for detecting MR response signals and at least one transmitting device for the wireless transmission of signals to a receiver of the magnetic resonance system. The local coil system is embodied with a transmitter-side diversity. A receiver-side diversity may exist in the magnetic resonance system.
Abstract:
A local coil system for detecting magnetic resonance (MR) signals in a magnetic resonance tomography (MRT) device includes an energy reception antenna for inductively receiving energy for the local coil system from a magnetic field changing over time with an energy transmission frequency. The energy reception antenna includes a conductor loop running in loop-like fashion from a first loop connection to a second loop connection. At least one path filter that blocks for harmonic frequencies of the energy transmission frequency is arranged over the course of the energy reception path, and/or at least one path filter that blocks for harmonic frequencies of the energy transmission frequency is arranged over the course of an energy reception path leading from the loop connections to a rectifier.
Abstract:
A local coil system for detecting magnetic resonance (MR) signals in a magnetic resonance tomography (MRT) device includes an energy reception antenna for inductively receiving energy for the local coil system from a magnetic field changing over time with an energy transmission frequency. The energy reception antenna includes a conductor loop running in loop-like fashion from a first loop connection to a second loop connection. At least one path filter that blocks for harmonic frequencies of the energy transmission frequency is arranged over the course of the energy reception path, and/or at least one path filter that blocks for harmonic frequencies of the energy transmission frequency is arranged over the course of an energy reception path leading from the loop connections to a rectifier.
Abstract:
A local coil system for a magnetic resonance system has a local coil for detecting MR response signals and a transmitter for wirelessly transmitting signals to the magnetic resonance system. At least one pseudo random device is operable to change signals in a pseudo random fashion in order to avoid interferences in the imaging.
Abstract:
A heating control system, monitoring system and predictive maintenance radio sensor system. The heating control system comprises at least one temperature transducer element having a downstream voltage transformer; an energy storage device which is electrically coupled to the at least one voltage transformer; a logic assembly coupled to the energy storage device and having sequence control; a data transmission unit coupled to the logic assembly; and a sensor, coupled to the logic assembly, for measuring ambient parameters.
Abstract:
A heating control system, monitoring system and predictive maintenance radio sensor system. The heating control system comprises at least one temperature transducer element having a downstream voltage transformer; an energy storage device which is electrically coupled to the at least one voltage transformer; a logic assembly coupled to the energy storage device and having sequence control; a data transmission unit coupled to the logic assembly; and a sensor, coupled to the logic assembly, for measuring ambient parameters.