Abstract:
Provided is an ink for use in electronic component production making use of screen printing, which is suitable for actually allowing fine lines with high precision to be drawn in screen printing, and for actually allowing successive screen printing operations to be performed. The ink for screen printing of the present invention includes surface-modified silver nanoparticles (A) and a solvent (B), and has a viscosity at a shear rate of 10 (1/s) and 25° C. of 60 Pa·s or more. The surface-modified silver nanoparticles (A) each include a silver nanoparticle and an amine-containing protective agent coating the silver nanoparticle. The solvent (B) includes at least a terpene solvent. In solvent (B), a content of solvents having a boiling point of less than 130° C. is 20 wt % or less based on the total amount of solvents.
Abstract:
A prepreg includes a resin composition including: (A) at least one of an epoxy resin having a naphthalene skeleton and a phenolic hardener having a naphthalene skeleton; (B) a polymer having at least the structures of formulae (2) and (3) among formulae (1), (2) and (3) and having a weight-average molecular weight of from 200,000 to 850,000 inclusive; and (C) an inorganic filler: wherein x:y:z (molar fraction)=0:0.95:0.05 to 0.2:0.6:0.2 (where x+y+z≦1, 0≦x≦0.2, 0.6≦y≦0.95, 0.05≦z≦0.2); R1 represents a hydrogen atom or a methyl group and R2 includes at least one of a glycidyl group and an epoxidized alkyl group among a hydrogen atom, an alkyl group, a glycidyl group and an epoxidized alkyl group in formula (2); and R3 represents a hydrogen atom or a methyl group and R4 represents Ph (phenyl group), —COOCH2Ph or —COO(CH2)2Ph in formula (3).
Abstract:
A step of scattering electrically conductive particles on a wiring board having wiring that is formed in accordance with an array pattern of the electrically conductive particles and prevented from being charged, and charging the electrically conductive particles; a step of aligning the charged electrically conductive particles in a predetermined array pattern corresponding to the wiring pattern by moving a squeegee on the wiring board; and a step of bonding a transfer film having an adhesive material layer formed thereon to the wiring board and transferring the electrically conductive particles aligned in a predetermined array pattern to the adhesive layer.
Abstract:
An anisotropic conductive film is capable of preventing a short circuit between terminals even though narrowing of the interval between connecting terminals advances. An electrically conductive support plate supports a base film having one surface with an adhesive layer. An array plate is disposed to face the adhesive layer and has through holes arranged in a pattern corresponding to the array pattern of electrically conductive particles. A spray sprays the electrically conductive particles together with a liquid while applying a voltage to the electrically conductive particles, in which the electrically conductive particles which are charged with an electrical charge are sprayed together with a liquid from the spray while applying a voltage between the spray and the support plate and the electrically conductive particles which have passed through the through holes of the array plate are arranged on the adhesive layer in the array pattern of the through holes.
Abstract:
The present invention relates to a conductive paste in which fine metal particles are dispersed into a chemical adsorption liquid produced from a mixture of at least an alkoxysilane compound, a silanol condensation catalyst, and a nonaqueous organic solvent to form an organic thin film comprising molecules covalently bound to the surface of the fine metal particle by having the surface of the fine metal particle react with the alkoxysilane compound, so that fine metal particles that are given a reactive function to the surface are produced while almost maintaining the original conductivity of the fine metal particles, and further the particles are pasted with an organic solvent.
Abstract:
A method of manufacturing an electric wiring layer including an electric wiring includes obtaining a pressed powder molded layer by pressurizing a powder including a metal particle with an insulating layer, the metal particle being constituted by a metal particle having conductivity and a surface insulating layer which is located on a surface of the metal particle and which mainly contains a glass material; and irradiating the pressed powder molded layer with energy rays and forming the electric wiring in an irradiation region.
Abstract:
Conductive patterns are formed using formulations containing metallic particles, which may be copper. These metallic particles may be coated with a binder material that improves adhesion during photosintering of the formulations. The binder contains chemistry suitable for it to be removed from the particles in a separate process such as drying or thermal sintering. The coating is a non-volatile organic compound attached to the metallic particles with a minimum thickness oxide coating. The organic coating improves a coefficient of thermal expansion value match between the metallic particles and the substrate, which may be polymeric.
Abstract:
A dielectric protective layer has nanoparticles integrated therein to increase the dielectric constants. The nanoparticles are surrounded by a protective shell to prevent agglomeration, in order to maintain the small particle size, for depositing an extra-thin film.
Abstract:
To provide an anisotropic conductive film, which contains conductive particles, wherein the anisotropic conductive film is an anisotropic conductive film configured to anisotropic conductively connect a terminal of a substrate with a terminal of an electronic component, wherein the conductive particles are conductive particles, in each of which a metal plated layer and an insulating layer are sequentially provided on a surface of a resin particle, or conductive particles, in each of which an insulating layer is provided on a metal particle, or both thereof, and wherein 3.0 to 10.0 conductive particles are linked together on average.