摘要:
Described herein are layered nasal devices including layered nasal devices having one or more stiffening members supporting the holdfast region of the nasal device. The stiffening member may be a stress-distributing member or a separate stress-distributing element or member may be included. In some variations the layered nasal device includes a stress distributing element to help prevent wrinkling, de-laminating, buckling, or otherwise disrupting the shape and/or activity of the nasal device. Also described herein are delayed resistance adapters that may be used with a nasal devices that inhibit exhalation more than inhalation (including, but not limited to the adhesive nasal devices described herein). A delayed resistance adapter may be activated to suspend or bypass the increased expiratory resistance of the nasal device. Suspending the increased expiratory resistance may allow the user to allow a user to acclimate to the use of the nasal device.
摘要:
Delayed resistance nasal devices include an airflow resistor that is configured to normally have a higher resistance to exhalation than inhalation, but the higher resistance to exhalation may be suspended, or delayed by activation of an airflow resistor bypass. Activation of an airflow resistor bypass bypasses or decreases the effect of the airflow resistor on nasal airflow through the nasal device, decreasing the resistance to exhalation. Methods of decreasing, suspending, or delaying the onset of the inhibition of the exhalation through such nasal respiratory devices are described.
摘要:
Apparatuses for sensing and outputting data associated with the inflation of an expandable member are described herein. In one embodiment, for example, An apparatus includes a sensor and an output device. The sensor is configured to be coupled to a reservoir that supplies a fluid to an expandable member, and is further configured to output a signal associated with a pressure of the fluid. The output device is configured to be in communication with the sensor. The output device is further configured to output a qualitative pressure indication associated with the signal associated with the pressure of the fluid without outputting a quantitative pressure indication.
摘要:
Whole-nose nasal respiratory devices and methods of making and using whole-nose nasal respiratory devices are described and illustrated herein. These devices are typically configured to be adhesively secured to a subject so that they engage both of the subject's nostrils and allow airflow from both nostrils to communicate with an airflow resistor. The airflow resistor is configured so that it inhibits exhalation through the nostrils more than it inhibits inhalation through the nostrils.
摘要:
Whole-nose nasal respiratory devices and methods of making and using whole-nose nasal respiratory devices are described and illustrated herein. These devices are typically configured to be adhesively secured to a subject so that they engage both of the subject's nostrils and allow airflow from both nostrils to communicate with an airflow resistor. The airflow resistor is configured so that it inhibits exhalation through the nostrils more than it inhibits inhalation through the nostrils.
摘要:
Described herein are nasal devices, including nasal devices formed in layers having four or fewer layers. In some variations, the nasal devices include a single integrated layer from which the flap of the airflow resistor is formed as well as the base of the holdfast region. The nasal devices may include a single aligner or rim body on the side of the device facing the subject. The aligner may protect the airflow resistor, and may help center or position the nasal device. In some variations, these nasal devices may include a noise-reduction feature. Also described herein are systems, devices and methods for determining if a passive nasal respiratory device having an airflow resistor configured to inhibit exhalation more than inhalation has been worn by a subject, and thereby confirming compliance.
摘要:
Whole-nose nasal respiratory devices and methods of making and using whole-nose nasal respiratory devices are described and illustrated herein. These devices are typically configured to be adhesively secured to a subject so that they engage both of the subject's nostrils and allow airflow from both nostrils to communicate with an airflow resistor. The airflow resistor is configured so that it inhibits exhalation through the nostrils more than it inhibits inhalation through the nostrils.
摘要:
Described herein are passive nasal device having a resistance to exhalation that is greater than the resistance to inhalation. Also described are devices, methods and systems for sensing and measuring intranasal pressure when a subject is wearing a passive nasal respiratory device that is configured to inhibit exhalation more than inhalation. Also described are adapters for nasal devices and methods of using a nasal device adapter. Adapters may be used so that a passive nasal device may be applied indirectly in communication with a subject's nose; in some variations this may allow the passive nasal device to be re-used. Also described herein are nasal devices having a billowing airflow resistor that is configured to have a greater resistance to exhalation than to inhalation. The billowing airflow resistor typically includes a first layer that is adjacent to a second layer; the first layer is flexible and billows opens during inhalation so that the first layer remains separated from the second layer, but remains substantially parallel to the second layer. During exhalation, the first layer collapses back down against the second layer. Additional passive nasal devices, systems and methods of using them are also described.
摘要:
Described herein are combined active PAP/passive EPAP interface devices to transmit positive air pressure from a PAP source to the user, but provide passive EPAP when the PAP source is disabled. These interface device may continue to provide benefit to the user even if the PAP source becomes disconnected or otherwise fails. The interface devices described herein include a passive EPAP airflow resistor configured to provide expiratory positive airway pressure (“EPAP”). These interface devices may also include quick connects and/or disconnects for releasably connecting to the source of pressurized breathable gas, a quick release for disconnecting from the source of pressurized breathable gas, and an adhesive user interface region that connects the device the user's face. Also described are adapter for converting a PAP interface devices into combined active PAP/passive EPAP interface devices, and methods of using these devices.
摘要:
Whole-nose nasal respiratory devices and methods of making and using whole-nose nasal respiratory devices are described and illustrated herein. These devices are typically configured to be adhesively secured to a subject so that they engage both of the subject's nostrils and allow airflow from both nostrils to communicate with an airflow resistor. The airflow resistor is configured so that it inhibits exhalation through the nostrils more than it inhibits inhalation through the nostrils.