Abstract:
Digital television (DTV) broadcasting using COFDM modulation is designed to modulate orthogonal frequency-division-multiplexed (OFDM) mid-band carriers with metadata including synchronization signals and transmission-mode signals. DTV signals modulate OFDM carriers occupying portions of the frequency spectrum of the transmission channel that extend in frequency both below and above these mid-band carriers. The OFDM midband carriers are capable of signaling when a new broadcast service is used that differs from the one disclosed. The signaling is provided by modulating the midband carriers with respective elements of signature sequences, each of which signature sequences is composed of Zadoff-Chu sequences and repetitive pseudo-random sequences scrambled by a Zadoff-Chu sequence.
Abstract:
A configuration system uses process plant items that may represent, or be capable of representing, entities in a process plant to assist in configuring, organizing, and changing the control and display activities within the process plant. Access to the items may be controlled by associating access control data with the items. The configuration system may also use objects that represent, or may be capable of representing, one or more steps to be performed by entities in the process plant. Access to these objects may be controlled by associating access control data with the objects. The access control data may indicate whether users or certain users may be able to, for example, view or modify all or some data associated with the process plant items or the objects. The process plant items may comprise, for example, module class objects which may be capable of generically representing process entities of the process plant, module objects which may be capable of specifically representing process entities of the process plant, composite templates, module templates, etc. The objects that represent, or may be capable of representing, one or more steps to be performed by entities in the process plant may comprise, for example, phase classes or unit phases.
Abstract:
A configuration system uses process plant items that may represent, or be capable of representing, entities in a process plant to assist in configuring, organizing, and changing the control and display activities within the process plant. Access to the items may be controlled by associating access control data with the items. The configuration system may also use objects that represent, or may be capable of representing, one or more steps to be performed by entities in the process plant. Access to these objects may be controlled by associating access control data with the objects. The access control data may indicate whether users or certain users may be able to, for example, view or modify all or some data associated with the process plant items or the objects. The process plant items may comprise, for example, module class objects which may be capable of generically representing process entities of the process plant, module objects which may be capable of specifically representing process entities of the process plant, composite templates, module templates, etc. The objects that represent, or may be capable of representing, one or more steps to be performed by entities in the process plant may comprise, for example, phase classes or unit phases.
Abstract:
A version control system helps to keep track of versions of process plant items that may represent, or be capable of representing, entities in a process plant. The process plant items may comprise, for example, module objects which may be capable of specifically representing process entities of the process plant. These module objects may be created from module class objects which may be capable of generically representing process entities of the process plant. Version data is stored and associated with a module object. The version data may comprise data indicative of a version of a module class object that was used to create the module object. The version data may also comprise data indicative of a version of the module object. Configuration systems, version control systems, viewing systems, debugging systems, run-time monitoring systems, asset management systems, etc., may examine or permit viewing of the version control data associated with an item.
Abstract:
Graphic elements and graphic displays are provided for use in a process environment to display information to one or more users about the process environment, such as the current state of devices within a process plant. The graphic elements and displays may be associated with various logical and physical elements within the process plant during configuration of the process plant, and may be configured and downloaded to the hardware within the process plant along with other configuration items, such as control routines. In particular, the graphic elements and graphic displays may be created and stored in a library, and may then be configured by being associated with various logical or physical entities within the plant. During the configuration process, the graphic elements and graphic displays may be associated with areas, equipment, process modules, control routines or control strategies of the plant as defined elsewhere in the plant configuration, or may be associated with interfaces or display devices, to define the hardware on which the graphic displays will execute during runtime, as well at to define the process entities to which these displays will be bound for display purposes. Still further, each of the graphic displays may be defined with a role or a functional use, such as an operator view, a maintenance view, etc., and these roles may be used to define the proper access and use of the graphic displays within the runtime environment.
Abstract:
A configuration system uses process plant items that may represent, or be capable of representing, entities in a process plant to assist in configuring, organizing, and changing the control and display activities within the process plant. Access to the items may be controlled by associating access control data with the items. The configuration system may also use objects that represent, or may be capable of representing, one or more steps to be performed by entities in the process plant. Access to these objects may be controlled by associating access control data with the objects. The access control data may indicate whether users or certain users may be able to, for example, view or modify all or some data associated with the process plant items or the objects. The process plant items may comprise, for example, module class objects which may be capable of generically representing process entities of the process plant, module objects which may be capable of specifically representing process entities of the process plant, composite templates, module templates, etc. The objects that represent, or may be capable of representing, one or more steps to be performed by entities in the process plant may comprise, for example, phase classes or unit phases.
Abstract:
Graphic displays, which display information about process elements and the manner in which these elements are connected within a process, process modules, which simulate the operation of the elements depicted within the graphic displays and control modules, which perform on-line control activities within a process, may be communicatively connected together to provide a combined control, simulation and display environment that enables enhanced control, simulation and display activities. Smart process objects, which have both graphical and simulation elements, may used to create one or more graphic displays and one or more process simulation modules, each having elements which may communicate with one another to share data between the graphic displays and the process modules. Additionally, function blocks within control modules executed in the process plant may reference the elements within the graphic displays and the process modules (and vice versa) so that control modules may use simulated data developed by the process modules to perform better control, so that process modules may perform better simulation using actual pant data from the control modules, and so that the graphic displays may be used to illustrate actual process data and/or simulated process data as developed by the control modules and the process modules.
Abstract:
A process controller implements and executes a standard set of function blocks or control functions defined by a standard protocol so that standard-type control is achieved with respect to non-standard-type devices. The process controller enables standard devices to implement the standard set of function blocks and control functions. The process controller implements an overall strategy as if all connected devices are standard devices by usage of a Fieldbus function block as a fundamental building block for control structures. These function blocks are defined to create control structures for all types of devices.
Abstract:
A process controller implements smart field device standards and other bus-based architecture standards so that communications and control among devices are performed so that the standard control operations are transparent to a user. The process controller allows attachment to a theoretically and substantially unlimited number and type of field devices including smart devices and conventional non-smart devices. Control and communication operations of the various numbers and types of devices are performed simultaneously and in parallel.