Abstract:
A controller includes a control module to control operation of a process in response to control data, a plug-in module coupled to the control module as a non-layered, integrated extension thereof, and a model identification engine. The plug-in detects a change in the control data, and a collects the control data and data in connection with a condition of the process in response to the detected change. The model identification engine executes a plurality of model parameter identification cycles. Each cycle includes simulations of the process each having different simulation parameter values and each using the control data as an input, an estimation error calculation for each simulation based on an output of the simulation and based on the operating condition data, and a calculation of a model parameter value based on the estimation errors and simulation parameter values used in the simulation corresponding to each of the estimation errors.
Abstract:
A controller includes a control module to control operation of a process in response to control data, a plug-in module coupled to the control module as a non-layered, integrated extension thereof, and a model identification engine. The plug-in detects a change in the control data, and a collects the control data and data in connection with a condition of the process in response to the detected change. The model identification engine executes a plurality of model parameter identification cycles. Each cycle includes simulations of the process each having different simulation parameter values and each using the control data as an input, an estimation error calculation for each simulation based on an output of the simulation and based on the operating condition data, and a calculation of a model parameter value based on the estimation errors and simulation parameter values used in the simulation corresponding to each of the estimation errors.
Abstract:
A robust method of creating process models for use in controller generation, such as in MPC controller generation, adds noise to the process data collected and used in the model generation process. In particular, a robust method of creating a parametric process model first collects process outputs based on known test input signals or sequences, adds random noise to the collected process data and then uses a standard or known technique to determine a process model from the collected process data. Unlike existing techniques for noise removal that focus on clean up of non-random noise prior to generating a process model, the addition of random, zero-mean noise to the process data enables, in many cases, the generation of an acceptable parametric process model in situations where no process model parameter convergence was otherwise obtained. Additionally, process models created using this technique generally have wider confidence intervals, therefore providing a model that works adequately in many process situations without needing to manually or graphically change the model.
Abstract:
A device receives, from a customer, a request for an end-to-end path through a network, determines parameters of a query based on the request and path criteria, and executes the query on a database of network elements capable of being included in the end-to-end path. The device also selects one or more of the network elements provided in the database based on results of the query, and reserves, in the database, the one or more selected network elements for the end-to-end path.
Abstract:
A process control system integrates the collection and analysis of process control data used to perform certain computationally expensive process control functions, like adaptive model generation and tuning parameter generation, in the same control device in which one or more of the process control routines are implemented, to thereby provide for faster and more efficient support of the process control routines. This system replaces a layered approach using multiple processing devices by integrating an analytical server which performs computationally expensive analyses used by one or more control routines directly into the real-time control device in which the one or more control routines are located. This integration provides the ability to analyze large quantities of data for multiple process loops controlled by a particular device in a fast and efficient manner.
Abstract:
A robust method of creating process models for use in controller generation, such as in MPC controller generation, adds noise to the process data collected and used in the model generation process. In particular, a robust method of creating a parametric process model first collects process outputs based on known test input signals or sequences, adds random noise to the collected process data and then uses a standard or known technique to determine a process model from the collected process data. Unlike existing techniques for noise removal that focus on clean up of non-random noise prior to generating a process model, the addition of random, zero-mean noise to the process data enables, in many cases, the generation of an acceptable parametric process model in situations where no process model parameter convergence was otherwise obtained. Additionally, process models created using this technique generally have wider confidence intervals, therefore providing a model that works adequately in many process situations without needing to manually or graphically change the model.
Abstract:
A method and apparatus that generates an estimate of a property of a batch process uses a non-parametric model to generate a plurality of rate of reaction estimates associated with the batch process. Each rate of reaction estimate may correspond, for example, to a particular time during the batch process. The plurality of rate of reaction estimates are then integrated to generate an estimate of a property of the batch at the particular time.
Abstract:
A method of managing a process model history having process models stored therein, includes organizing the process models according to first and second priority criteria, wherein each process model is represented according to a combination of a value in connection with the first and second priority criteria. The representation may be coordinate values in a multi-dimensional space having dimensions corresponding to the first and second priority criteria. A degree of separation or relationship to a common point of reference is calculated for each process model, where the point of reference is a value in connection with the first and second priority criteria. A process model may be removed or selected for deletion based on the degree of separation or proximity in relation to the point of reference, subject to the total number of process models identified for the same control routine, and the total number of process models identified for the same operational region.
Abstract:
A process control system integrates the collection and analysis of process control data used to perform certain computationally expensive process control functions, like adaptive model generation and tuning parameter generation, in the same control device in which one or more of the process control routines are implemented, to thereby provide for faster and more efficient support of the process control routines. This system replaces a layered approach using multiple processing devices by integrating an analytical server which performs computationally expensive analyses used by one or more control routines directly into the real-time control device in which the one or more control routines are located. This integration provides the ability to analyze large quantities of data for multiple process loops controlled by a particular device in a fast and efficient manner.
Abstract:
A method of managing a process model history having process models stored therein, includes organizing the process models according to first and second priority criteria, wherein each process model is represented according to a combination of a value in connection with the first and second priority criteria. The representation may be coordinate values in a multi-dimensional space having dimensions corresponding to the first and second priority criteria. A degree of separation or relationship to a common point of reference is calculated for each process model, where the point of reference is a value in connection with the first and second priority criteria. A process model may be removed or selected for deletion based on the degree of separation or proximity in relation to the point of reference, subject to the total number of process models identified for the same control routine, and the total number of process models identified for the same operational region.