摘要:
The present invention relates to a thermolabile caffeine fraction useful for an efficient Agrobacterium-mediated genetic transformation in plant systems to develop desired traits in plant, and a method of preparing said fraction from tea leaves and also, an efficient and cost-effective method of introducing said Agrobacterium-mediated genetic transformation into plant systems using said caffeine fraction of tea leaves.
摘要:
The present invention relates to an efficient and cost effective method of preventing growth of genetic transformant bacteria Agrobacterium tumefaciens after transformation in plants by using tea leaf extract as a bactericide, wherein said method leads to elimination of common problem of polyphenol oxidation during transformation and thereby helps maintain regeneration potential in explants and also helps in increased transformation efficacy
摘要:
The present invention relates to a thermolabile caffeine fraction useful for an efficient Agrobacterium-mediated genetic transformation in plant systems to develop desired traits in plant, and a method of preparing said fraction from tea leaves and also, an efficient and cost-effective method of introducing said Agrobacterium-mediated genetic transformation into plant systems using said caffeine fraction of tea leaves.
摘要:
The present invention relates to a thermolabile caffeine fraction useful for an efficient Agrobacterium-mediated genetic transformation in plant systems to develop desired traits in plants, and a method of preparing said fraction from tea leaves and also, an efficient and cost-effective method of introducing said Agrobacterium-mediated genetic transformation into plant systems using said caffeine fraction of tea leaves.
摘要:
The present invention relates to a thermolabile caffeine fraction useful for an efficient Agrobacterium-mediated genetic transformation in plant systems to develop desired traits in plant, and a method of preparing said fraction from tea leaves and also, an efficient and cost-effective method of introducing said Agrobacterium-mediated genetic transformation into plant systems using said caffeine fraction of tea leaves.