摘要:
A clock recovery system recovers an optical clock signal from an optical data signal that is wavelength and data rate independent. The system splits the optical data signal into a first optical data signal and a second optical data signal. The system then transmits the first optical data signal and the second optical data signal in opposite directions around a fiber loop. In the fiber loop, the system modulates and amplifies the first optical data signal to generate a modulated-amplified first optical data signal. The system then recovers the optical clock signal after the modulated-amplified first optical data signal and the second optical data signal interact in the fiber loop.
摘要:
An optical pedestal fiber is configured to be taperable to form a tapered fiber having a mode field diameter at the tapered end that differs from the mode field diameter at the untapered end in correspondence with the difference between the cladding diameter at the tapered end and the cladding diameter at the untapered end. A plurality of such pedestal fibers can be used to construct a tapered fiber bundle coupler that provides matching of both core pitch and mode field diameter between a plurality of input fibers and individual cores of a multicore fiber. Further, the tapered fiber bundle coupler can be constructed using a plurality of fibers, in which individual fibers are configured to have different effective refractive indices, thereby suppressing crosstalk therebetween.
摘要:
An optical fiber has two or more core regions disposed within a common cladding region. Each of the core regions is configured to guide a respective light transmission comprising at least one optical mode along the length of the fiber. The cores are arranged within the common cladding region according to a core configuration that substantially prevents crosstalk between modes of neighboring cores in the fiber, in a deployment of the fiber in which cross-coupling between neighboring cores is affected by perturbations arising in the deployed fiber.
摘要:
An optical transmission and amplification system includes a multichannel transmission span with a length of a multicore transmission fiber having a plurality of individual transmission cores. A first tapered multicore coupler provides connectivity between the plurality of transmission cores of the multicore fiber and a respective plurality of individual transmission leads. A fiber amplifier is provided having a plurality of individual cores including at least one pump core and a plurality of amplifier core. A second tapered multicore coupler provides connectivity between the amplifier cores of the fiber amplifier and a respective plurality of amplifier leads, and between the at least one pump core and a respective pump lead.
摘要:
An optical transmission and amplification system includes a multichannel transmission span with a length of a multicore transmission fiber having a plurality of individual transmission cores. A first tapered multicore coupler provides connectivity between the plurality of transmission cores of the multicore fiber and a respective plurality of individual transmission leads. A fiber amplifier is provided having a plurality of individual cores including at least one pump core and a plurality of amplifier core. A second tapered multicore coupler provides connectivity between the amplifier cores of the fiber amplifier and a respective plurality of amplifier leads, and between the at least one pump core and a respective pump lead.
摘要:
A multicore optical fiber includes a plurality of core regions disposed within a common cladding region. Each of the plurality of core regions is configured, in combination with the common cladding region, to propagate light along a longitudinal axis of the fiber. At least two core regions are configured to inhibit resonant coupling of propagated light therebetween within a selected region of operation. At least one segment of the fiber includes a twist that is configured such that when the twisted segment is subjected to a bend having a selected radius, the twist creates a controlled change in the amount of crosstalk between the at least two core regions, compared with the amount of crosstalk between the at least two core regions when a bend having the selected radius is introduced into a non-twisted segment of the fiber.
摘要:
A multicore optical fiber includes a plurality of core regions disposed within a common cladding region. Each of the plurality of core regions is configured, in combination with the common cladding region, to propagate light along a longitudinal axis of the fiber. At least two core regions are configured to inhibit resonant coupling of propagated light therebetween within a selected region of operation. At least one segment of the fiber includes a twist that is configured such that when the twisted segment is subjected to a bend having a selected radius, the twist creates a controlled change in the amount of crosstalk between the at least two core regions, compared with the amount of crosstalk between the at least two core regions when a bend having the selected radius is introduced into a non-twisted segment of the fiber.
摘要:
Devices and techniques are described for connecting each of plurality of terminals to respective individual cores of a multicore fiber. Each of the plurality of terminals is provided with a respective length of a single-core fiber. The single-core fibers are configured to maintain modal properties that arc substantially the same, within a tolerance range, at the front and rear ends, as the single-core fiber is tapered. The single-core fibers are assembled together. The front end of the assembly is tapered to form a front cross-section in which the single-core fiber cores are arranged in a configuration matching that of the cores of the multicore fiber.
摘要:
A passive, coexisting 10 Gb/s passive optical network (XGPON) and Gb/s passive optical network (GPON) is created by using a pair of counter-propagating laser pump sources at a network-based optical line terminal, in combination with a feeder fiber, to create distributed Raman amplification for the upstream signals associated with both GPON and XGPON systems. A passive remote node is located at the opposite end of the feeder fiber, in the vicinity of a group of end-user locations, and includes a cyclic WDM and a pair of power splitters for the GPON and XGPON signals such that the GPON signals are thereafter directed through a first power splitter into optical network units (ONUs) specifically configured for GPON wavelengths and XGPON signals are directed through a second power splitter into ONUs configured for the XGPON wavelengths. The arrangement of the remote node allows for the reach and split ratios of the GPON and XGPON systems to be individually designed for optimum performance.
摘要:
A passive, coexisting 10 Gb/s passive optical network (XGPON) and Gb/s passive optical network (GPON) is created by using a pair of counter-propagating laser pump sources at a network-based optical line terminal, in combination with a feeder fiber, to create distributed Raman amplification for the upstream signals associated with both GPON and XGPON systems. A passive remote node is located at the opposite end of the feeder fiber, in the vicinity of a group of end-user locations, and includes a cyclic WDM and a pair of power splitters for the GPON and XGPON signals such that the GPON signals are thereafter directed through a first power splitter into optical network units (ONUs) specifically configured for GPON wavelengths and XGPON signals are directed through a second power splitter into ONUs configured for the XGPON wavelengths. The arrangement of the remote node allows for the reach and split ratios of the GPON and XGPON systems to be individually designed for optimum performance.