Abstract:
The testing of various chemicals has yielded new chemicals and chemical mixtures for the use of removing carbon deposits from the internal combustion engine. Some of these chemicals and chemical mixtures have proven to work better across many different carbon types than other chemicals that were tested. These chemical terpenes are typically produced from plants. One standard terpene mixture is known as turpentine. The chemical turpentine and chemicals found in turpentine have been determined, through our research and testing, to be extremely effective at removing the carbon that is produced within the internal combustion engine.
Abstract:
This invention relates to the field of induction cleaning, more particularly to chemically cleaning the induction system of the internal combustion engine. The carbon that accumulates within the induction tract of the internal combustion engine is very difficult to remove. Chemically these carbon deposits are very close to that of asphalt or bitumen. It has been found that if the induction cleaning chemicals are delivered in timed layered intervals the removal of such induction carbon can be accomplished. The Dual Solenoid Induction Cleaner uses electronically controlled solenoids to deliver at least two different chemistries in alternating layers to the engine's induction system. These electric solenoids are connected to a single induction cleaner nozzle. The induction cleaner nozzle is slipped through the vacuum port opening into the inside of the induction system where it will spray an aerosol of the chemistry directly into the moving air column entering the engine.
Abstract:
Detecting a leak from a site in a sealed system with a source of pressurized gas which is capable of passing through the site, a composition of matter which adheres to the surfaces of the system and which is capable of showing the presence of the gas escaping from the site. The method includes: injecting gas into the system to a pressure in excess of the surrounding pressure, and covering the external surface with the composition to identify the location of the site by the interaction of the escaping gas with the composition. The composition is foam that includes a surfactant which forms a least one bubble in the presence of escaping gas and an indicator which changes color in the presence of the escaping gas. The leak is an opening down to at least the size of a hole 0.001″ in diameter. A gas detector may also be used.
Abstract:
The testing of various chemicals has yielded new chemicals and chemical mixtures for the use of removing carbon deposits from the internal combustion engine. Some of these chemicals and chemical mixtures have proven to work better across many different carbon types than other chemicals that were tested. These chemical terpenes are typically produced from plants. One standard terpene mixture is known as turpentine. The chemical turpentine and chemicals found in turpentine have been determined, through our research and testing, to be extremely effective at removing the carbon that is produced within the internal combustion engine.
Abstract:
An analysis tool which extracts all the available parameter identifications (i.e. PIDS) from a vehicle's power train control module for diagnostic decisions. This is done by checking these PIDS and other information (e.g., calculated PIDS, Break Points, charts and algorithms) in three states; key on engine off, key on engine cranking, key on engine running. In all three modes the tool is comparing the live data from PIDS and voltage to the other information (e.g, Break Points). If any of this data are outside the programmed values a flag is assigned to the failure or control problem. The relationship between a particular PID and its associated preprogrammed value(s) may be indicated by a light. The depth of the problem (if any) is conveyed by the color of the light. Also included are tests/charts for fuel trim, engine volumetric efficiency, simulated injector, power, catalyst efficiency, and engine coolant range.
Abstract:
An analysis tool which extracts all the available parameter identifications (i.e. PIDS) from a vehicle's power train control module for diagnostic decisions. This is done by checking these PIDS and other information (e.g., calculated PIDS, Break Points, charts and algorithms) in three states; key on engine off, key on engine cranking, key on engine running In all three modes the tool is comparing the live data from PIDS and voltage to the other information (e.g, Break Points). If any of this data are outside the programmed values a flag is assigned to the failure or control problem. The relationship between a particular PID and its associated preprogrammed value(s) may be indicated by a light. The depth of the problem (if any) is conveyed by the color of the light. Also included are tests/charts for fuel trim, engine volumetric efficiency, simulated injector, power, catalyst efficiency, and engine coolant range.
Abstract:
An analysis tool which extracts all the available parameter identifications (i.e. PIDS) from a vehicle's power train control module for diagnostic decisions. This is done by checking these PIDS and other information (e.g., calculated PIDS, Break Points, charts and algorithms) in three states; key on engine off, key on engine cranking, key on engine running. In all three modes the tool is comparing the live data from PIDS and voltage to the other information (e.g, Break Points). If any of this data are outside the programmed values a flag is assigned to the failure or control problem. The relationship between a particular PID and its associated preprogrammed value(s) may be indicated by a light. The depth of the problem (if any) is conveyed by the color of the light. Also included are tests/charts for fuel trim, engine volumetric efficiency, simulated injector, power, catalyst efficiency, and engine coolant range.
Abstract:
An analysis tool which extracts all the available parameter identifications (i.e. PIDS) from a vehicle's power train control module for diagnostic decisions. This is done by checking these PIDS and other information (e.g., calculated PIDS, Break Points, charts and algorithms) in three states; key on engine off, key on engine cranking, key on engine running. In all three modes the tool is comparing the live data from PIDS and voltage to the other information (e.g, Break Points). If any of this data are outside the programmed values a flag is assigned to the failure or control problem. The relationship between a particular PID and its associated preprogrammed value(s) may be indicated by a light. The depth of the problem (if any) is conveyed by the color of the light. Also included are tests/charts for fuel trim, engine volumetric efficiency, simulated injector, power, catalyst efficiency, and engine coolant range.
Abstract:
An analysis tool which extracts all the available parameter identifications (i.e. PIDS) from a vehicle's power train control module for diagnostic decisions. This is done by checking these PIDS and other information (e.g., calculated PIDS, Break Points, charts and algorithms) in three states; key on engine off, key on engine cranking, key on engine running. In all three modes the tool is comparing the live data from PIDS and voltage to the other information (e.g, Break Points). If any of this data are outside the programmed values a flag is assigned to the failure or control problem. The relationship between a particular PID and its associated preprogrammed value(s) may be indicated by a light. The depth of the problem (if any) is conveyed by the color of the light. Also included are tests/charts for fuel trim, engine volumetric efficiency, simulated injector, power, catalyst efficiency, and engine coolant range.
Abstract:
Identifying fires by: measuring pressure pulses from the exhaust; generating a waveform from the measured pressure pulses; dividing the waveform into segments, one for each engine cylinder; associating each segment with the cylinder which generated the pulse; and examining each segment for features which indicate a misfire. The method further includes: generating a trigger signal; associating the trigger signal with ignition in a cylinder; measuring the time between this signal and the next trigger signal; dividing the time between these trigger signals into cylinder boxes, one for each cylinder; and shifting each of the boxes relative to the associated segment such that the peak and a portion of the rising edge and/or the falling edge falls within the box. For each box the peak, rising edge and falling edge is compared with threshold values. Each box in which at least two of the thresholds are exceeded is flagged.