Abstract:
Process for the preparation of Flecainide, its pharmaceutically acceptable salts and important intermediates thereof that involves the use of the 2-halobenzoic acid and its derivatives as a starting material. The use of this process also allows for the synthesis of a novel intermediate useful in the production of Flecainide. This new process is an inexpensive and efficient process for the manufacture of these compounds.
Abstract:
The present invention provides a novel and improved process for the preparation of Zonisamide and the intermediates thereof. In one aspect of the present invention, the process provides for: the preparation and isolation of a novel crystalline form of anhydrous 1,2-benzisoxazole-3-methanesulfonic acid of formula 1; the direct chlorination of the acid of formula 1 into its acid chloride of formula 2; and the in situ conversion of the intermediate acid chloride of formula 2 into Zonisamide.
Abstract:
Provided is an efficient method for the preparation of 3-aryloxy-3-arylpropylamines, their optical stereoisomers, and pharmaceutically acceptable salts thereof. The process allows for the isolation of 3-aryloxy-3-arylpropylamines in high yield and purity. The present invention further relates to a process for producing fluoxetine, tomoxetine, norfluoxetine, duloxetine, nisoxetine, and their optically enriched (R)— and (S)-enantiomers.
Abstract:
A process is provided for preparing (R)-5-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-5-hydroxy-3-oxo-1-heptanoic acid, R-substituted ester 9 comprising: (a) reacting the aldehyde 1 with the enolate form of (S)-2-hydroxy-1,2,2-triphenylethyl acetate substituent in a chelating co-solvent; (b) hydrolysis of (R,S)-5-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-3-hydroxy-1-pentanoic acid, (S)-2-hydroxy-1,2,2-triphenylethyl ester (2a and 2b) using a base, preferably an alkali metal base, preferably in a solvent to form the carboxylic acid 7; (c) treating the acid 7 with a chiral base to form a salt and purifying the salt to obtain enantiomerically enriched (R)-7 chiral base salt; (d) alkylation of the (R)-7 chiral base salt or the free base derived from (R)-7, forming (R)-5-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-5-hydroxy-3-oxo-1-heptanoic acid, R-substituted ester 9 and atorvastatin calcium 6, wherein R is a C1 to C6 alkyl, C6 to C9 aryl or C7 to C10 aralkyl.
Abstract:
A process for preparing (R)-5-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-5-hydroxy-3-oxo-1-heptanoic acid, tert-butylester comprising: (a) reduction of 5-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-3-oxo-1-pentanoic acid, (R)-2-hydroxy-1,2,2-triphenylethyl ester; (b) hydrolysis of (R)-5-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-3-hydroxy-1-pentanoic acid, (R)-2-hydroxy-1,2,2-triphenylethyl ester using an alkali base in a solvent to form the acid; (c) alkylation of the acid forming (R)-5-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-5-hydroxy-3-oxo-1-heptanoic acid, tert-butylester.
Abstract:
The present invention provides a novel and improved process for the preparation of Zonisamide and the intermediates thereof. In one aspect of the present invention, the process provides for: the preparation and isolation of a novel crystalline form of anhydrous 1,2-benzisoxazole-3-methanesulfonic acid of formula 1; the direct chlorination of the acid of formula 1 into its acid chloride of formula 2; and the in situ conversion of the intermediate acid chloride of formula 2 into Zonisamide.
Abstract:
The present invention relates to a process for producing 17-N-substituted-carbamoyl-4-aza-androst-1-en-3-ones of formula 1, including Finasteride and Dutasteride.
Abstract:
A process is provided for preparing (R)-5-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-5-hydroxy-3-oxo-1-heptanoic acid, R-substituted ester 9 comprising: (a) reacting the aldehyde 1 with the enolate form of (S)-2-hydroxy-1,2,2-triphenylethyl acetate substituent in a chelating co-solvent; (b) hydrolysis of (R,S)-5-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-3-hydroxy-1-pentanoic acid, (S)-2-hydroxy-1,2,2-triphenylethyl ester (2a and 2b) using a base, preferably an alkali metal base, preferably in a solvent to form the carboxylic acid 7; (c) treating the acid 7 with a chiral base to form a salt and purifying the salt to obtain enantiomerically enriched (R)-7 chiral base salt; (d) alkylation of the (R)-7 chiral base salt or the free base derived from (R)-7, forming (R)-5-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-5-hydroxy-3-oxo-1-heptanoic acid, R-substituted ester 9 and atorvastatin calcium 6, wherein R is a C1 to C6 alkyl, C6 to C9 aryl or C7 to C10 aralkyl.
Abstract:
A process for preparing Oxcarbazepine III comprising: a) reacting oximinostilbene IV with chlorosulfonyl isocyanate in an inert organic solvent and isolating compound V b) hydrolyzing compound V to form crude Oxcarbazepine III c) purifying oxcarbazepine.
Abstract:
A process for the preparation of the boron difluoride chelate of quinolone-3-carboxylic acid of formula I, where R1 is an optionally substituted C1-5 alkyl, an optionally substituted C3-6 cycloalkyl, or aryl; R2 is a C1-5 alkyl, alkoxy, amino, alkylamino, or acylamino; R3 is a hydrogen, halogen, C1-5 alkoxy, amino, alkylamino, or acylamino; or when R3 is O or S forms an optionally substituted 5-, 6- or 7-membered ring T with R1, or if the ring T is substituted, the substituent is an optionally substituted C1-5 alkyl, an optionally substituted C3-6 cycloalkyl, or aryl; X is hydrogen, chloride or fluoride; and Y is chloride or fluoride; via: (a) the reaction of quinolone-3-carboxylic acid derivative II, where R1, R2, R3, T, X, and Y are as defined above and R4 is hydrogen, optionally substituted C1-5 alkyl, optionally subsituted C3-6 cycloalkyl, alkylsilyl, aryl or arylalkyl, with: (b) fluoroboric acid or trifluoroborane in the presence of a silicon-containing compound, wherein the silicon-containing compound contains at least one silicon-oxygen bond.