Abstract:
A method performed by a provider edge device in a multi-autonomous system (AS) includes receiving advertisements from other PEs of the multi-AS, where one or more of the advertisements includes a destination AS parameter that indicates a destination AS of the multi-AS; generating pseudo-wire (PW) tables based on the advertisements received from the other PEs; and establishing PWs with respect to the other PEs based on the PW tables.
Abstract:
A method performed by a provider edge device includes generating pseudo-wire tables based on virtual private local area network service advertisements from other provider edge devices, where the provider edge device services customer edge devices, and establishing pseudo-wires with respect to the other provider edge devices, based on the pseudo-wire tables, where the pseudo-wires include an active pseudo-wire and at least one standby pseudo-wire with respect to each of the other provider edge devices. The method also includes generating and advertising VPLS advertisement to the other provider edge devices, detecting a communication link failure associated with one of the customer edge devices in which the provider edge device services, and determining whether the at least one standby pseudo-wire needs to be utilized because of the communication link failure.
Abstract:
A method performed by a provider edge device includes generating pseudo-wire tables based on virtual private local area network service advertisements from other provider edge devices, where the provider edge device services customer edge devices, and establishing pseudo-wires with respect to the other provider edge devices, based on the pseudo-wire tables, where the pseudo-wires include an active pseudo-wire and at least one standby pseudo-wire with respect to each of the other provider edge devices. The method also includes generating and advertising VPLS advertisement to the other provider edge devices, detecting a communication link failure associated with one of the customer edge devices in which the provider edge device services, and determining whether the at least one standby pseudo-wire needs to be utilized because of the communication link failure.
Abstract:
A first network device creates a protection path to a second network device associated with a first service site, and creates a pseudowire between the first service site and a second service site via the first network device and the second network device. The first network device also detects a failure between the first network device and the first service site, and forwards traffic, provided by the pseudowire between the first service site and the second service site, via the protection path. The second network device uses the traffic on the protection path as a trigger to activate a link between the second network device and the first service site.
Abstract:
A network device includes a control unit configured to execute an extended layer three (L3) routing protocol within a control plane of the network device. The extended L3 routing protocol is extended to process a routing protocol control message having a set of layer two (L2) identifiers of customer devices attached to an autonomous system (AS) and an indicator that specifies a Route Target associated with a Virtual Private Local Area Network Service (VPLS) domain within the AS. The routing protocol control message conforms to a message type of the L3 routing protocol to initiate a flush of the set of L2 identifiers.
Abstract:
In general, techniques are described for dynamically configuring cross-domain pseudowires (PWs). A network device positioned between a first domain and a second domain of a computer network may implement the techniques. The intermediate network device comprises at least one interface and an LDP module, a transformation module and a routing protocol module. The interface receives a label distribution protocol (LDP) message that includes data for configuring a cross-domain PW from a first provider edge (PE) device of the first domain. The LDP module parses the received LDP message to extract the cross-domain PW configuration data. The translation module transforms the extracted data to conform to routing protocol extensions for advertising the cross-domain PW configuration data. The routing protocol module forms a routing protocol message that includes the transformed data. The interface outputs the routing protocol message to the second intermediate device of the second domain to establish the cross-domain PW.
Abstract:
A first network device creates a protection path to a second network device associated with a first service site, and creates a pseudowire between the first service site and a second service site via the first network device and the second network device. The first network device also detects a failure between the first network device and the first service site, and forwards traffic, provided by the pseudowire between the first service site and the second service site, via the protection path. The second network device uses the traffic on the protection path as a trigger to activate a link between the second network device and the first service site.
Abstract:
A first network device creates a protection path to a second network device associated with a first service site, and creates a pseudowire between the first service site and a second service site via the first network device and the second network device. The first network device also detects a failure between the first network device and the first service site, and forwards traffic, provided by the pseudowire between the first service site and the second service site, via the protection path. The second network device uses the traffic on the protection path as a trigger to activate a link between the second network device and the first service site.
Abstract:
A method performed by a provider edge device includes generating pseudo-wire tables based on virtual private local area network service advertisements from other provider edge devices, where the provider edge device services customer edge devices, and establishing pseudo-wires with respect to the other provider edge devices, based on the pseudo-wire tables, where the pseudo-wires include an active pseudo-wire and at least one standby pseudo-wire with respect to each of the other provider edge devices. The method also includes generating and advertising VPLS advertisement to the other provider edge devices, detecting a communication link failure associated with one of the customer edge devices in which the provider edge device services, and determining whether the at least one standby pseudo-wire needs to be utilized because of the communication link failure.
Abstract:
A method performed by a provider edge device includes generating pseudo-wire tables based on virtual private local area network service advertisements from other provider edge devices, where the provider edge device services customer edge devices, and establishing pseudo-wires with respect to the other provider edge devices, based on the pseudo-wire tables, where the pseudo-wires include an active pseudo-wire and at least one standby pseudo-wire with respect to each of the other provider edge devices. The method also includes generating and advertising VPLS advertisement to the other provider edge devices, detecting a communication link failure associated with one of the customer edge devices in which the provider edge device services, and determining whether the at least one standby pseudo-wire needs to be utilized because of the communication link failure.