摘要:
A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
摘要:
A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
摘要:
Disclosed embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a CVT has a number of spherical planets in contact with an idler. Various idler assemblies can be used to facilitate to improve durability, fatigue life, and efficiency of a CVT. In one embodiment, the idler assembly has two rolling elements having contact surfaces that are angled with respect to a longitudinal axis of the CVT. In some embodiments, a bearing is operably coupled between the first and second rolling elements. The bearing is configured to balance axial force between the first and second rolling elements. In one embodiment, the bearing is a ball bearing. In another embodiment, the bearing is an angular contact bearing. In yet other embodiments, needle roller bearings are employed.
摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for infinitely variable transmissions (IVT) having a variator provided with a plurality of tilting spherical planets. In one embodiment, a variator is provided with multiple planet arrays. In another embodiment, a hydraulic system is configured to control the transmission ratio of the IVT. Various inventive idler assemblies and planet-pivot arm assemblies can be used to facilitate adjusting the transmission speed ratio of an IVT. Embodiments of a transmission housing and bell housing are adapted to house components of an IVT and, in some embodiments, to cooperate with other components of the IVT to support operation and/or functionality of the IVT. Various related devices include embodiments of, for example, a control feedback mechanism, axial force generation and management mechanisms, a control valve integral with an input shaft, and a rotatable carrier configured to support planet-pivot arm assemblies.
摘要:
A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
摘要:
A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
摘要:
A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
摘要:
A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for infinitely variable transmissions (IVT) having a variator provided with a plurality of tilting spherical planets. In one embodiment, a variator is provided with multiple planet arrays. In another embodiment, a hydraulic system is configured to control the transmission ratio of the IVT. Various inventive idler assemblies and planet-pivot arm assemblies can be used to facilitate adjusting the transmission speed ratio of an IVT. Embodiments of a transmission housing and bell housing are adapted to house components of an IVT and, in some embodiments, to cooperate with other components of the IVT to support operation and/or functionality of the IVT. Various related devices include embodiments of, for example, a control feedback mechanism, axial force generation and management mechanisms, a control valve integral with an input shaft, and a rotatable carrier configured to support planet-pivot arm assemblies.
摘要:
A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.