摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for infinitely variable transmissions (IVT) having a variator provided with a plurality of tilting spherical planets. In one embodiment, a variator is provided with multiple planet arrays. In another embodiment, a hydraulic system is configured to control the transmission ratio of the IVT. Various inventive idler assemblies and planet-pivot arm assemblies can be used to facilitate adjusting the transmission speed ratio of an IVT. Embodiments of a transmission housing and bell housing are adapted to house components of an IVT and, in some embodiments, to cooperate with other components of the IVT to support operation and/or functionality of the IVT. Various related devices include embodiments of, for example, a control feedback mechanism, axial force generation and management mechanisms, a control valve integral with an input shaft, and a rotatable carrier configured to support planet-pivot arm assemblies.
摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for infinitely variable transmissions (IVT) having a variator provided with a plurality of tilting spherical planets. In one embodiment, a variator is provided with multiple planet arrays. In another embodiment, a hydraulic system is configured to control the transmission ratio of the IVT. Various inventive idler assemblies and planet-pivot arm assemblies can be used to facilitate adjusting the transmission speed ratio of an IVT. Embodiments of a transmission housing and bell housing are adapted to house components of an IVT and, in some embodiments, to cooperate with other components of the IVT to support operation and/or functionality of the IVT. Various related devices include embodiments of, for example, a control feedback mechanism, axial force generation and management mechanisms, a control valve integral with an input shaft, and a rotatable carrier configured to support planet-pivot arm assemblies.
摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT) having a variator provided with a plurality of tilting, traction planets and traction rings. In one embodiment, a variator is coupled to a rangebox to provide multiple operating modes. In another embodiment, a hydraulic system is configured to control the transmission ratio of the variator and the rangebox. Various inventive shift-cam-and-sun subassemblies can be used to facilitate shifting of the transmission ratio of a CVT. Embodiments of a transmission housing and bell housing are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Various related devices include embodiments of, for example, a pivot arm, a control feedback mechanism, axial force generation and management mechanisms, a control valve integral with an input shaft, a pivot pin hub, and a rotatable carrier configured to support planet-pivot arm assemblies. FIG. 72 shows a torque-split ball-type rolling traction CVT with a ball-type rolling traction variator (1200) and planetary gearset (1400) which is followed by a rangebox (1600).
摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of a CVT. In another embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various inventive traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
摘要:
Disclosed here are inventive systems and methods for a powertrain of an electric vehicle (EV). In some embodiments, said powertrain includes a continuously variable transmission (CVT) coupled to an electric drive motor, wherein a control system is configured to control the CVT and/or the drive motor to optimize various efficiencies associated with the EV and/or its subsystems. In one specific embodiment, the control system is configured to operate the EV in an economy mode. Operating in said mode, the control system simultaneously manages the CVT and the drive motor to optimize the range of the EV. The control system can be configured to manage the current provided to the drive motor, as well as adjust a transmission speed ratio of the CVT. Other modes of operation are also disclosed. The control system can be configured to manage the power to the drive motor and adjust the transmission speed ratio of the CVT taking into account battery voltage, throttle position, and transmission speed ratio, for example.
摘要:
Disclosed here are inventive systems and methods for a powertrain of an electric vehicle (EV). In some embodiments, said powertrain includes a continuously variable transmission (CVT) coupled to an electric drive motor, wherein a control system is configured to control the CVT and/or the drive motor to optimize various efficiencies associated with the EV and/or its subsystems. In one specific embodiment, the control system is configured to operate the EV in an economy mode. Operating in said mode, the control system simultaneously manages the CVT and the drive motor to optimize the range of the EV. The control system can be configured to manage the current provided to the drive motor, as well as adjust a transmission speed ratio of the CVT. Other modes of operation are also disclosed. The control system can be configured to manage the power to the drive motor and adjust the transmission speed ratio of the CVT taking into account battery voltage, throttle position, and transmission speed ratio, for example.
摘要:
An infinitely variable transmission (IVT) having a rotatable input shaft arranged along a longitudinal axis of the transmission. In one embodiment, the input shaft is adapted to supply a lubricant to the interior of the transmission. In some embodiments, a stator assembly is coupled to, and coaxial with, the input shaft. The IVT has a plurality of planets operably coupled to the stator assembly. The planets are arranged angularly about the longitudinal axis of the transmission. In one embodiment, a traction ring is operably coupled to the planets. The IVT is provided with a housing that is operably coupled to the traction ring. The housing is substantially fixed from rotating with the input shaft. The traction ring is substantially fixed from rotating with the input shaft. In some embodiments, the IVT is provided with a lubricant manifold that is configured to supply a lubricant to the input shaft.
摘要:
A method of controlling a prime mover and a continuously variable transmission (CVT) is described. The CVT has a group of spherical power adjusters. Each power adjuster has a tiltable axis of rotation. A method of optimizing a vehicle having a drive motor and a continuously variable transmission is also described. The CVT has a plurality of spherical power adjusters, each power adjuster having a tiltable axis of rotation. A drive system having a prime mover and a continuously variable transmission can be optimized in another method.
摘要:
Embodiments are directed to a front end accessory drive (FEAD), subassemblies, and components therefor. Embodiments disclosed cover power modulating devices (PMD) which can be used in a FEAD. In one embodiment, a continuously variable transmission (CVT) is coupled directly to a crankshaft of a prime mover, and the CVT is used to regulate the speed and/or torque delivered to an accessory. A compound drive device includes a motor/generator subassembly cooperating with a CVT subassembly to provide a motor functionality with torque multiplication or division, or alternatively, a generator functionality with torque multiplication or division. In some embodiments, a FEAD includes a PMD having a sun shaft configured to couple to a sun of the PMD and to an electric motor component, such as an electrical armature or an electrical field. In one embodiment, the electrical armature the electrical field are placed concentrically and coaxially and configured to rotate relative to one another in opposite directions.
摘要:
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of a CVT. In another embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various inventive traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.