摘要:
A replacement gate process for fabricating a semiconductor device with metal gates includes forming a dummy gate stack, patterning dummy gates, doping source and drain regions for the gates, and forming an inter-level dielectric layer that overlays the source and drain regions. The sacrificial layer of the dummy gates is removed to form trenches using a three stage process. The first stage begins the trenches, whereby trenches entrance corners are exposed. The second stage is an etch that rounds the corners. The third stage is a main etch for the sacrificial layer, which is typically polysilicon. The corner rounding of the second stage improves the performance of the third stage and results in a better metal back fill including a reduction in pit defects. The process improves overall device yield in comparison to an otherwise equivalent process that omits the corner rounding step.
摘要:
The present application discloses a method of forming a semiconductor structure. In at least one embodiment, the method includes forming a polysilicon layer over a substrate. A mask layer is formed over the polysilicon layer. The mask layer is patterned to form a patterned mask layer. A polysilicon structure is formed by etching the polysilicon layer using the patterned mask layer as a mask. The polysilicon structure has an upper surface and a lower surface, and the etching of the polysilicon layer is arranged to cause a width of the upper surface of the polysilicon structure greater than that of the lower surface of the polysilicon structure.
摘要:
Methods for ion implantation. A method comprises forming a layer of non-crosslinking mask material over a semiconductor region; forming a patterned photoresist layer over the non-crosslinking mask layer; removing the photoresist layer and the non-crosslinking mask layer from the exposed regions, while the masked regions remain covered; and implanting dopant ions into the exposed regions, the dopant ions being blocked from the masked regions. The non-crosslinking mask layer and any remaining photoresist material may be removed. In additional embodiments, the non-crosslinking material comprises carbon. In another embodiment, the non-crosslinking material comprises an oxide. Ion implantations for source and drain, lightly doped drain, and well regions are performed.
摘要:
The present application discloses a method of forming a semiconductor structure. In at least one embodiment, the method includes forming a polysilicon layer over a substrate. A mask layer is formed over the polysilicon layer. The mask layer is patterned to form a patterned mask layer. A polysilicon structure is formed by etching the polysilicon layer using the patterned mask layer as a mask. The polysilicon structure has an upper surface and a lower surface, and the etching of the polysilicon layer is arranged to cause a width of the upper surface of the polysilicon structure greater than that of the lower surface of the polysilicon structure.
摘要:
A process for etching deep trenches in a substrate for purposes such as the fabrication of microelectromechanical systems (MEMS), for example, on the substrate. The two-step process includes first etching a tapered trench having a tapered profile and enhanced sidewall passivation in a substrate along a protective mask which defines the desired trench profile on the substrate surface. Next, the tapered trench is trimmed by high-density plasma in an isotropic etching step to provide a straight-profile deep trench with minimum sidewall passivation.
摘要:
A method and device for gradually equalizing air or gas pressures between substrate processing chambers prior to transfer of a substrate between the chambers. The device comprises a gas flow restrictor provided in the chamber wall that separates the chambers. A door typically reversibly seals the gas flow restrictor. During substrate processing in one of the chambers, the gas flow restrictor is sealed to maintain a partial vacuum pressure in the chamber. Prior to opening the wafer transfer gate between the chambers, the gas flow restrictor door is opened to facilitate the gradual flow of air or gas from the higher-pressure chamber, through the gas flow restrictor to the lower-pressure chamber and substantially equalize the pressures in the respective chambers.