摘要:
Provided are a magnetic sheet for use in a radio frequency identification (RFID) antenna, an RFID antenna including the magnetic sheet, and a method of manufacturing the magnetic sheet, in which the magnetic sheet includes an amorphous alloy selected from the group consisting of Fe—Si—B, Fe—Si—B—Cu—Nb, Fe—Zr—B and Co—Fe—Si—B. The magnetic sheet is made by laminating amorphous alloy ribbons made of an amorphous alloy between magnetic sheet layers formed of alloy powder including at least one amorphous alloy and then compression-molding the amorphous alloy ribbons, to thereby control microcrack of the amorphous alloy ribbons and enhance characteristic of an end-product. The magnetic sheet is also thin, and has an excellent magnetic permeability, and a simple manufacturing process.
摘要:
According to the present disclosure, a flash memory device includes a semiconductor substrate that includes selection transistor regions and a memory cell region defined between the selection transistor region, first isolation layers formed in the selection transistor regions, and second isolation layers formed in the memory cell region. The second isolation layers have a lower height than the first isolation layers.
摘要:
A method of manufacturing a flash memory device includes the steps of forming trenches by forming a tunnel oxide layer and a conductive layer for a floating gate over a semiconductor substrate, and then etching a portion of the conductive layer, the tunnel oxide layer and the semiconductor substrate to form the trenches, filling the trenches with an insulating layer to form isolation layers projecting above the floating gate, forming spacers on sidewalls of the isolation layers projecting above the floating gate, etching the conductive layer using the spacers as a mask, thereby forming a U-shaped conductive layer, removing the spacers, etching the top surface of the isolation layers, thereby controlling an Effective Field Height (EFH) of the isolation layer, and forming a dielectric layer and a conductive layer for a control gate on the resulting surface.
摘要:
According to the present disclosure, a flash memory device includes a semiconductor substrate that includes selection transistor regions and a memory cell region defined between the selection transistor region, first isolation layers formed in the selection transistor regions, and second isolation layers formed in the memory cell region. The second isolation layers have a lower height than the first isolation layers.
摘要:
A method of manufacturing a flash memory device includes the steps of forming trenches by forming a tunnel oxide layer and a conductive layer for a floating gate over a semiconductor substrate, and then etching a portion of the conductive layer, the tunnel oxide layer and the semiconductor substrate to form the trenches, filling the trenches with an insulating layer to form isolation layers projecting above the floating gate, forming spacers on sidewalls of the isolation layers projecting above the floating gate, etching the conductive layer using the spacers as a mask, thereby forming a U-shaped conductive layer, removing the spacers, etching the top surface of the isolation layers, thereby controlling an Effective Field Height (EFH) of the isolation layer, and forming a dielectric layer and a conductive layer for a control gate on the resulting surface.
摘要:
A method of manufacturing a NAND flash memory device, wherein isolation layers are formed in a semiconductor substrate, and an upper side of each of the isolation layers is made to have a negative profile. A polysilicon layer is formed on the entire surface. At this time, a seam is formed within the polysilicon layer due to the negative profile. A post annealing process is performed in order to make the seam to a void. Accordingly, an electrical interference phenomenon between cells can be reduced and a threshold voltage (Vt) shift value can be lowered.
摘要:
A distributor with controlled switching elements (CSE) which simplifies hardware construction by distributing the function of a running adder into a reverse banyan network. The distributor comprises a CSE-based network using switching stages, each switching stage having control switching elements. A control signal input stage switches two packet input signal switching channels, each stage receiving each control signal from an output stage having switching elements. An active packet counter counts and generates an output signal which represents the number of active packets inputted to the CSE network. A tail-of-queue register is used for storing output vectors.
摘要:
A flash memory device including a semiconductor substrate that includes selection transistor regions and a memory cell region defined between the selection transistor region, first isolation layers formed in the selection transistor regions, and second isolation layers formed in the memory cell region. The second isolation layers have a lower height than the first isolation layers.
摘要:
A method of manufacturing a flash memory device includes the steps of forming trenches by forming a tunnel oxide layer and a conductive layer for a floating gate over a semiconductor substrate, and then etching a portion of the conductive layer, the tunnel oxide layer and the semiconductor substrate to form the trenches, filling the trenches with an insulating layer to form isolation layers projecting above the floating gate, forming spacers on sidewalls of the isolation layers projecting above the floating gate, etching the conductive layer using the spacers as a mask, thereby forming a U-shaped conductive layer, removing the spacers, etching the top surface of the isolation layers, thereby controlling an Effective Field Height (EFH) of the isolation layer, and forming a dielectric layer and a conductive layer for a control gate on the resulting surface.
摘要:
In a method of manufacturing an SONOS type flash memory device, a first oxide layer and a buffer poly layer are formed over a surface of a semiconductor except for a memory cell region of a cell region. A second oxide layer, a nitride layer and a third oxide layer are formed. The poly buffer layer is exposed by etching specific regions in a peri region and in a DSL/SSL region of the cell region. A conductive layer is formed to electrically connect to the poly buffer layer. The third oxide layer, the nitride layer and the second nitride layer are selectively etched to form a gate of the memory cell region of the cell region. The buffer poly layer is selectively etched to form a gate in the DSL/SSL region of the cell region and a gate in the peri region.