摘要:
Learning systems and methods of the present disclosure include generating a text document based on a digital file, tokenizing the text document, generating a semantic model based on the tokenized text document using an unsupervised machine learning algorithm, assigning a plurality of passage scores to a corresponding plurality of passages of the tokenized text document, selecting one or more candidate knowledge items from the tokenized text document based on the plurality of passage scores, filtering the one or more candidate knowledge items based on user data, generating one or more structured learning assets based on the one or more filtered candidate knowledge items, generating an interaction based at least on the one or more structured learning assets, and transmitting the interaction to a user device. Each passage score is assigned based on a relationship between a corresponding passage and the semantic model.
摘要:
Learning systems and methods of the present disclosure include generating a text document based on a digital file, tokenizing the text document, generating a semantic model based on the tokenized text document using an unsupervised machine learning algorithm, assigning a plurality of passage scores to a corresponding plurality of passages of the tokenized text document, selecting one or more candidate knowledge items from the tokenized text document based on the plurality of passage scores, filtering the one or more candidate knowledge items based on user data, generating one or more structured learning assets based on the one or more filtered candidate knowledge items, generating an interaction based at least on the one or more structured learning assets, and transmitting the interaction to a user device. Each passage score is assigned based on a relationship between a corresponding passage and the semantic model.
摘要:
Learning systems and methods of the present disclosure include generating a text document based on a digital file, tokenizing the text document, generating a semantic model based on the tokenized text document using an unsupervised machine learning algorithm, assigning a plurality of passage scores to a corresponding plurality of passages of the tokenized text document, selecting one or more candidate knowledge items from the tokenized text document based on the plurality of passage scores, filtering the one or more candidate knowledge items based on user data, generating one or more structured learning assets based on the one or more filtered candidate knowledge items, generating an interaction based at least on the one or more structured learning assets, and transmitting the interaction to a user device. Each passage score is assigned based on a relationship between a corresponding passage and the semantic model.
摘要:
A system, method and apparatus for maximizing the effectiveness and efficiency of learning, retaining and retrieving knowledge and skills includes a learning engine that includes a novel model of human learning that adaptively determines a memory indicator for each item to be learned for each user during all phases of learning, including a short active phase of learning in which items are actively recalled and a long passive phase of learning in which items are passively forgotten. The memory indicator is determined based on a user's actual memory performance during the short-term active phase of learning and is accurately predicted based on mathematical modeling during the long-term passive phase of learning. The learning model makes use of a target level and an alert level of memory performance for each item of information for each user and the learning engine schedules presentation of items for review or study based on the user's performance with respect to the target and alert levels. The learning engine operates to present to the user items to be learned by the user when a memory indicator value for an item is equal to or below the alert level and stops presenting items to the user when the memory indicator for that item is equal to or greater than the target level for that item.
摘要:
A method for generating a set of concepts related to a target concept includes accessing a set of candidate concepts, embedding the target concept and the set of candidate concepts in a semantic vector space, selecting one or more intermediate concepts from the set of candidate concepts in response to determining whether each embedded candidate concept in the set of embedded candidate concepts satisfies a predetermined relationship with the embedded target concept, and filtering the one or more intermediate concepts to yield the set of concepts related to the target concept. The method may further include generating a multiple-choice question in which the target concept corresponds to a correct answer choice and the set of concepts related to the target concept correspond to distractors.
摘要:
A method for predictively updating one or more user parameters associated with a user of a learning system includes predicting, based on the one or more user parameters, a predicted activity of the user, receiving an actual activity of the user, comparing the predicted activity to the actual activity, and updating the one or more user parameters in response to determining that the predicted activity does not match the actual activity. The method may further include scheduling one or more learning interactions based on the one or more updated learning parameters, where the scheduling includes selecting at least one of a timing of the one or more learning interactions or a type of the one or more learning interactions.
摘要:
Various techniques are disclosed for providing a learning system. In one example, such a learning system includes a content editor processor configured or programmed to receive content data packets from a number of learner devices. The learning system is configured to identify a number of items from digital materials based on the content data packets. The learning system may include an adaptive engine configured to transmit interactions to the learner devices based on the identified items. The adaptive engine is also configured to receive respective responses from the learner devices based on the interactions. The learning system is also configured generate an electronic copy of the digital materials with highlighted items based on the received responses. Other examples of learning systems and related methods are also provided.
摘要:
Learning systems and methods of the present disclosure include generating a text document based on a digital file, tokenizing the text document, generating a semantic model based on the tokenized text document using an unsupervised machine learning algorithm, assigning a plurality of passage scores to a corresponding plurality of passages of the tokenized text document, selecting one or more candidate knowledge items from the tokenized text document based on the plurality of passage scores, filtering the one or more candidate knowledge items based on user data, generating one or more structured learning assets based on the one or more filtered candidate knowledge items, generating an interaction based at least on the one or more structured learning assets, and transmitting the interaction to a user device. Each passage score is assigned based on a relationship between a corresponding passage and the semantic model.
摘要:
A method for generating a set of concepts related to a target concept includes accessing a set of candidate concepts, embedding the target concept and the set of candidate concepts in a semantic vector space, selecting one or more intermediate concepts from the set of candidate concepts in response to determining whether each embedded candidate concept in the set of embedded candidate concepts satisfies a predetermined relationship with the embedded target concept, and filtering the one or more intermediate concepts to yield the set of concepts related to the target concept. The method may further include generating a multiple-choice question in which the target concept corresponds to a correct answer choice and the set of concepts related to the target concept correspond to distractors.