Abstract:
In one embodiment, holographic data storage medium includes a first thermoplastic substrate portion having a thickness less than approximately 2 millimeters and a second thermoplastic substrate portion having a thickness less than approximately 2 millimeters. A holographic recording material may be sandwiched between the first and second thermoplastic substrate portions. By making thermoplastic substrate portions sufficiently thin, edge wedge problems can be avoided.
Abstract:
Optical storage system including a disc drive and an optical media having a low radial total indicated runout and method of manufacturing such media. The optical media includes a disc substrate having a formatted surface and a center hole. A disc alignment mechanism is provided, wherein the concentric registration of the formatted surface is specified relative to the disc alignment mechanism. A hub having a center hole is positioned at the disc center hole, wherein the hub center hole is centered relative to the disc alignment mechanism. The disc drive includes a drive spindle and a center pin extending from the drive spindle for centering the drive spindle to the optical media.
Abstract:
The invention is directed toward techniques for stamping optical data storage disks. A master is first created to include several distinct information regions etched upon a master surface. The master is then used to create one or more stampers. The stampers include a number of distinct stamper regions in locations corresponding to locations of the distinct information regions on the master. The stamper is then used to create a number of first replica disks that include distinct replicated regions. The distinct replicated regions are removed from the first replica disks to define second disks.
Abstract:
In one embodiment, holographic data storage medium includes a first thermoplastic substrate portion having a thickness less than approximately 2 millimeters and a second thermoplastic substrate portion having a thickness less than approximately 2 millimeters. A holographic recording material may be sandwiched between the first and second thermoplastic substrate portions. By making thermoplastic substrate portions sufficiently thin, edge wedge problems can be avoided.
Abstract:
Hubless optical disc having low radial runout. The optical disc is capable of containing a high capacity of information therein. The optical disc includes a disc substrate having a formatted surface. A mechanism is provided within the disc substrate for mating the optical disc with a drive spindle, wherein the formatted surface is concentrically registered relative to the mechanism within the disc substrate. In one embodiment, the mechanism may comprise an annular groove, annular ridge, or a plurality of holes molded in the disc substrate. The present invention includes optical tooling for forming the hubless optical disc having low radial runout. The present invention further includes an optical disc player drive spindle capable of mating with the high-capacity hubless optical disc.
Abstract:
A mold and a process for use in producing data storage articles such as single substrate double-sided disks. In one configuration, a mold for manufacturing a substrate includes a stamper, at least one holder having an interface with the stamper, and a vacuum line for applying a retention force to maintain the interface between the holder and the stamper. In another configuration, the mold includes a demolding line for applying a demolding force to the substrate to aid in separating the substrate from the stamper. The various embodiments of the present invention provide, among other things, easier and faster stamper changeover, substrates and final data storage articles having improved process indicia such as thickness, flatness, inner and outer diameter, and concentricity, and facilitates production of single-substrate double-sided disks.
Abstract:
A rewritable optical recording disk has an increased thickness that is greater than or equal to approximately 1.5 mm. In particular, the disk may have a substrate with a thickness that is greater than or equal to approximately 2.3 mm and less than or equal to approximately 2.6 mm. The increased thickness of the substrate enhances the flatness of the recording disk relative to a recording plane. In particular, the increased thickness reduces process-induced surface variations such as warpage and tilt, and provides the disk with increased stiffness to resist deflection during use. The enhanced flatness enables data to be recorded on the disk in a consistent manner with greater spatial densities using techniques such as near-field, air-incident recording. The resulting disk thereby yields greater spatial density and data storage capacity.
Abstract:
A rewritable optical recording disk has a substrate with an increased thickness that is greater than or equal to approximately 1.5 mm and less than or equal to approximately 2.5 mm. The increased thickness of the substrate enhances the flatness of the recording disk relative to a recording plane. In particular, the increased thickness reduces process-induced surface variations such as warpage and tilt, and provides the disk with increased stiffness to resist deflection during use. The enhanced flatness enables data to be recorded on the disk in a consistent manner with greater spatial densities using techniques such as near-field, air-incident recording. The resulting disk thereby yields greater spatial density and data storage capacity.
Abstract:
A rewritable optical recording disk has a substrate with an increased thickness that is greater than or equal to approximately 1.5 mm and less than or equal to approximately 2.5 mm. The increased thickness of the substrate enhances the flatness of the recording disk relative to a recording plane. In particular, the increased thickness reduces process-induced surface variations such as warpage and tilt, and provides the disk with increased stiffness to resist deflection during use. The enhanced flatness enables data to be recorded on the disk in a consistent manner with greater spatial densities using techniques such as near-field, air-incident recording. The resulting disk thereby yields greater spatial density and data storage capacity.
Abstract:
The invention is directed toward techniques for creating molded substrates for use in various different data storage media. The molded substrates have improved thickness profiles that can improve media quality, and in some cases facilitate higher data storage densities. In many cases, the improved thickness profile is a thickness profile that has improved flatness. Mechanical flatness or optical flatness can be achieved. In particular, optical flatness is desirable for substrates used in holographic data storage media having a sandwiched construction.