摘要:
Methods and systems for knowledge pattern search and analysis for selecting microorganisms based on desired metabolic properties or biological behaviors are disclosed in various embodiments of the invention. In one embodiment of the invention, a computer-implemented method for selecting a purpose-specific microorganism first compiles microorganisms' profiles by linking each microorganism's methanogenic, hydrogenic, electrogenic, another metabolic property, and/or another biological behavior to genetic and chemical fingerprints of metabolic and energy-generating biological pathways. Then, based on the compiled profiles of the microorganisms, the computer-implemented method groups the microorganisms into pathway characteristics using machine-learning and pattern recognition performed on a computer system, and subsequently generates a prediction called “discovered characteristics” for a desired metabolic property or a desired biological behavior of at least one microorganism. Furthermore, a profile match score may be calculated to indicate usefulness of one or more microorganisms for renewable energy generation from biological waste materials or wastewater.
摘要:
The present invention relates to a toughened transparent thermoplastic composite of a transparent thermoplastic and a block copolymer having a block of a random copolymer and an elastomeric block. One preferred embodiment is a polycarbonate that is modified with a block copolymer having a methyl methacrylate (MMA) and naphthyl methacrylate or a substituted naphthyl methacrylate block and an elastomeric block. This block copolymer has excellent miscibility with polycarbonate resin, even at elevated temperature, producing transparent polycarbonate blends. The blend can provide a toughened strength polycarbonate while maintaining its excellent optical properties.
摘要:
The present invention discloses various embodiments of multiple domain anomaly detection systems and methods. In one embodiment of the invention, a multiple domain anomaly detection system uses a generic learning procedure per domain to create a “normal data profile” for each domain based on observation of data per domain, wherein the normal data profile for each domain can be used to determine and compute domain-specific anomaly data per domain. Then, domain-specific anomaly data per domain can be analyzed together in a cross-domain fusion data analysis using one or more fusion rules. The fusion rules may involve comparison of domain-specific anomaly data from multiple domains to derive a multiple-domain anomaly score meter for a particular cross-domain analysis task. The multiple domain anomaly detection system and its related method may also utilize domain-specific anomaly indicators of each domain to derive a cross-domain anomaly indicator using the fusion rules.
摘要:
One or more systems and methods for knowledge pattern search from networked agents are disclosed in various embodiments of the invention. A system and a related method can utilizes a knowledge pattern discovery process, which involves analyzing historical data, contextualizing, conceptualizing, clustering, and modeling of data to pattern and discover information of interest. This process may involve constructing a pattern-identifying model using a computer system by applying a context-concept-cluster (CCC) data analysis method, and visualizing that information using a computer system interface. In one embodiment of the invention, once the pattern-identifying model is constructed, the real-time data can be gathered using multiple learning agent devices, and then analyzed by the pattern-identifying model to identify various patterns for gains analysis and derivation of an anomalousness score. This system can be useful for knowledge discovery applications in various industries, including business, competitive intelligence, and academic research.
摘要:
The present invention discloses various embodiments of multiple domain anomaly detection systems and methods. In one embodiment of the invention, a multiple domain anomaly detection system uses a generic learning procedure per domain to create a “normal data profile” for each domain based on observation of data per domain, wherein the normal data profile for each domain can be used to determine and compute domain-specific anomaly data per domain. Then, domain-specific anomaly data per domain can be analyzed together in a cross-domain fusion data analysis using one or more fusion rules. The fusion rules may involve comparison of domain-specific anomaly data from multiple domains to derive a multiple-domain anomaly score meter for a particular cross-domain analysis task. The multiple domain anomaly detection system and its related method may also utilize domain-specific anomaly indicators of each domain to derive a cross-domain anomaly indicator using the fusion rules.
摘要:
Methods and systems for knowledge pattern search and analysis for selecting microorganisms based on desired metabolic properties or biological behaviors are disclosed in various embodiments of the invention. In one embodiment of the invention, a computer-implemented method for selecting a purpose-specific microorganism first compiles microorganisms' profiles by linking each microorganism's methanogenic, hydrogenic, electrogenic, another metabolic property, and/or another biological behavior to genetic and chemical fingerprints of metabolic and energy-generating biological pathways. Then, based on the compiled profiles of the microorganisms, the computer-implemented method groups the microorganisms into pathway characteristics using machine-learning and pattern recognition performed on a computer system, and subsequently generates a prediction called “discovered characteristics” for a desired metabolic property or a desired biological behavior of at least one microorganism. Furthermore, a profile match score may be calculated to indicate usefulness of one or more microorganisms for renewable energy generation from biological waste materials or wastewater.
摘要:
Methods and systems for knowledge pattern search and analysis for selecting microorganisms based on desired metabolic properties or biological behaviors are disclosed in various embodiments of the invention. In one embodiment of the invention, a computer-implemented method for selecting a purpose-specific microorganism first compiles microorganisms' profiles by linking each microorganism's methanogenic, hydrogenic, electrogenic, another metabolic property, and/or another biological behavior to genetic and chemical fingerprints of metabolic and energy-generating biological pathways. Then, based on the compiled profiles of the microorganisms, the computer-implemented method groups the microorganisms into pathway characteristics using machine-learning and pattern recognition performed on a computer system, and subsequently generates a prediction called “discovered characteristics” for a desired metabolic property or a desired biological behavior of at least one microorganism. Furthermore, a profile match score may be calculated to indicate usefulness of one or more microorganisms for renewable energy generation from biological waste materials or wastewater.
摘要:
Methods and systems for knowledge pattern search and analysis for selecting microorganisms based on desired metabolic properties or biological behaviors are disclosed in various embodiments of the invention. In one embodiment of the invention, a computer-implemented method for selecting a purpose-specific microorganism first compiles microorganisms' profiles by linking each microorganism's methanogenic, hydrogenic, electrogenic, another metabolic property, and/or another biological behavior to genetic and chemical fingerprints of metabolic and energy-generating biological pathways. Then, based on the compiled profiles of the microorganisms, the computer-implemented method groups the microorganisms into pathway characteristics using machine-learning and pattern recognition performed on a computer system, and subsequently generates a prediction called “discovered characteristics” for a desired metabolic property or a desired biological behavior of at least one microorganism. Furthermore, a profile match score may be calculated to indicate usefulness of one or more microorganisms for renewable energy generation from biological waste materials or wastewater.
摘要:
The invention relates to a transparent thermoplastic blend of polycarbonate (PC) and a copolymer of methyl methacrylate (MMA) and naphthyl methacrylate or a substituted naphthyl methacrylate. This copolymer has excellent miscibility with polycarbonate resin, even at elevated temperature, producing transparent polycarbonate blends. The blend provides an improved scratch resistance of polycarbonate while maintaining its excellent optical properties.
摘要:
One or more systems and methods for knowledge pattern search from networked agents are disclosed in various embodiments of the invention. A system and a related method can utilizes a knowledge pattern discovery process, which involves analyzing historical data, contextualizing, conceptualizing, clustering, and modeling of data to pattern and discover information of interest. This process may involve constructing a pattern-identifying model using a computer system by applying a context-concept-cluster (CCC) data analysis method, and visualizing that information using a computer system interface. In one embodiment of the invention, once the pattern-identifying model is constructed, the real-time data can be gathered using multiple learning agent devices, and then analyzed by the pattern-identifying model to identify various patterns for gains analysis and derivation of an anomalousness score. This system can be useful for knowledge discovery applications in various industries, including business, competitive intelligence, and academic research.