Abstract:
A method for verification of alarms is disclosed. The method involves receiving an alarm signal trigger associated with an alarm signal, receiving video data from a premise associated with the alarm signal, rapidly analyzing the video data to test for the existence a significant event, and when a significant event exists, sending a representation of a segment of interest of the video data, the segment of interest being associated with the significant event, to a user.
Abstract:
An automated self-monitored alarm verification solution including at least a premises portion, a server portion, and an end user device portion. Alarm verification includes capturing by an image capture device at least one image in response to a detection event, and transmitting a first data signal including the image to a local signal processing device. The signal processing device transmits a second signal including at least a portion of the image to a remote hosted server according to at least a first set of predetermined parameters. After receiving the second signal, the server transmits a third signal including at least a portion of the image from the hosted server to a user device. Using the user device, a user views the image and indicates a validity, status of the alarm based at least in part on the content of the image. Based at least upon either the validation status indicated by the user, or upon a failure to receive a message including a validation status from the user within a predetermined duration of time, the server portion may send an alarm signal to an emergency response service.
Abstract:
A method and apparatus for encoding surveillance video where one or more regions of interest are identified and the encoding parameter values associated with those regions are specified in accordance with intermediate outputs of a video analytics process. Such an analytics-modulated video compression approach allows the coding process to adapt dynamically based on the content of the surveillance images. In this manner, the fidelity of the region of interest is increased relative to that of a background region such that the coding efficiency is improved, including instances when no target objects appear in the scene. Better compression results can be achieved by assigning different coding priority levels to different types of detected objects.
Abstract:
A method and apparatus for encoding surveillance video where one or more regions of interest are identified and the encoding parameter values associated with those regions are specified in accordance with intermediate outputs of a video analytics process. Such an analytics-modulated video compression approach allows the coding process to adapt dynamically based on the content of the surveillance images. In this manner, the fidelity of the region of interest is increased relative to that of a background region such that the coding efficiency is improved, including instances when no target objects appear in the scene. Better compression results can be achieved by assigning different coding priority levels to different types of detected objects.
Abstract:
In some embodiments, a non-transitory processor-readable medium stores code representing instructions to cause a processor to smooth a current image of a scene to produce a smoothed image and subtract pixel values of a background image of the scene from corresponding pixel values of the smoothed image to produce an altitude difference image. Pixel values of the altitude difference image are weighted to produce a weighted difference image. The weighted difference image is convolved to produce a convoluted difference image. A threshold is applied to each pixel of the convoluted difference image to produce a thresholded difference image. Pixels having a value less than the threshold are removed from the thresholded difference image and classified as background pixels. Foreground pixels are determined based on the thresholded difference image.
Abstract:
A method for verification of alarms is disclosed. The method involves receiving an alarm signal trigger associated with an alarm signal, receiving video data from a premise associated with the alarm signal, rapidly analyzing the video data to test for the existence a significant event, and when a significant event exists, sending a representation of a segment of interest of the video data, the segment of interest being associated with the significant event, to a user.
Abstract:
An automated self-monitored alarm verification solution including at least a premises portion, a server portion, and an end user device portion. Alarm verification includes capturing by an image capture device at least one image in response to a detection event. and transmitting a first data signal including the image to a local signal processing device. The signal processing device transmits a second signal including at least a portion of the image to a remote hosted server according to at least a first set of predetermined parameters. After receiving the second signal, the server transmits a third signal including at least a portion of the image from the hosted serv r to a user device. Using the user device, a user views the image and indicates a validity status of the alarm based at least in part on the content of the image. Based at least upon either the validation status indicated by the user, or upon a failure to receive a message including a validation status from the user within a predetermined duration of time. the server portion may send an alarm signal to an emergency response service.
Abstract:
A method for verification of alarms is disclosed. The method involves receiving an alarm signal trigger associated with an alarm signal, receiving video data from a premise associated with the alarm signal, rapidly analyzing the video data to test for the existence a significant event, and when a significant event exists, sending a representation of a segment of interest of the video data, the segment of interest being associated with the significant event, to a user.
Abstract:
A method for verification of alarms is disclosed. The method involves receiving an alarm signal trigger associated with an alarm signal, receiving video data from a premise associated with the alarm signal, rapidly analyzing the video data to test for the existence a significant event, and when a significant event exists, sending a representation of a segment of interest of the video data, the segment of interest being associated with the significant event, to a user.
Abstract:
In some embodiments, a non-transitory processor-readable medium stores code representing instructions to cause a processor to smooth a current image of a scene to produce a smoothed image and subtract pixel values of a background image of the scene from corresponding pixel values of the smoothed image to produce an altitude difference image. Pixel values of the altitude difference image are weighted to produce a weighted difference image. The weighted difference image is convolved to produce a convoluted difference image. A threshold is applied to each pixel of the convoluted difference image to produce a thresholded difference image. Pixels having a value less than the threshold are removed from the thresholded difference image and classified as background pixels. Foreground pixels are determined based on the thresholded difference image.