摘要:
A purging system for removing oxygen from a fuel cell system during a shutdown period for the fuel cell system. The purging system includes a separator having an inlet and an outlet; a first exhaust line for communicating a first exhaust gas stream from an outlet of the fuel cell system to the separator inlet during the shutdown period of the fuel cell system; and a second exhaust line for communicating a second exhaust gas stream to an inlet of the fuel cell system for delivering the second exhaust gas stream to the fuel cell system during the shutdown period. The separator removes oxygen from the first exhaust gas stream such that the first stream nitrogen molar volume is lower than the second steam nitrogen molar volume and the first stream oxygen molar volume is higher than the second stream oxygen molar volume.
摘要:
An electrode material is provided to include a Li-containing oxide of the formula of Li(NixCoyMz)O2, wherein M is an element different from Li, Ni, Co, or O, wherein x, y, and z are each independently between 0 and 1 and the sum of x, y, z is 1; and an oxygen scavenger material contacting at least a portion of the Li-containing oxide. In another embodiment, the electrode material further includes a second Li-containing oxide having the formula of Li(Nix2Coy2Mz2)O2, wherein M is an element different from Li, Ni, Co, or O, wherein x2, y2, and z2 are each independently between 0 and 1 and the sum of x2, y2, z2 is 1, wherein the oxide composite is configured as a first material layer, wherein the second Li-containing oxide is configured as a second material layer disposed next to the first material layer.
摘要:
According to at least one aspect of the present invention, a layered catalyst having an active area is provided. In at least one embodiment, the layered electrode includes a first catalyst layer having a first noble metal concentration and a first ionomer concentration, and a second catalyst layer disposed next to the first catalyst layer, the second catalyst layer having a second noble metal concentration different from the first noble metal concentration and a second ionomer concentration different from the first ionomer concentration. In at least another embodiment, the metallic alloy includes a metallic alloy of platinum, nickel, and cobalt.
摘要:
A method for making a membrane electrode assembly includes the steps of providing a membrane electrode assembly including an anode including a hydrogen oxidation catalyst; a cathode; a membrane disposed between the anode and the cathode; and depositing a peroxide decomposition catalyst in at least one position selected from the group consisting of the anode, the cathode, a layer between the anode and the membrane and a layer between the cathode and the membrane wherein the peroxide decomposition catalyst has selectivity when exposed to hydrogen peroxide toward reactions which form benign products from the hydrogen peroxide. The peroxide decomposition catalyst can also be positioned within the membrane. Also disclosed is a power-generating fuel cell system including such a membrane electrode assembly, and a process for operating such a fuel cell system.
摘要:
An electrode material is provided to include a Li-containing oxide of the formula of Li(NixCoyMz)O2, wherein M is an element different from Li, Ni, Co, or O, wherein x, y, and z are each independently between 0 and 1 and the sum of x, y, z is 1; and an oxygen scavenger material contacting at least a portion of the Li-containing oxide. In another embodiment, the electrode material further includes a second Li-containing oxide having the formula of Li (Nix2Coy2Mz2)O2, wherein M is an element different from Li, Ni, Co, or O, wherein x2, y2, and z2 are each independently between 0 and 1 and the sum of x2, y2, z2 is 1, wherein the oxide composite is configured as a first material layer, wherein the second Li-containing oxide is configured as a second material layer disposed next to the first material layer.
摘要:
According to at least one aspect of the present invention, there is provided a fuel cell catalyst formed from a metallic alloy of one or more catalyst metals and one or more leachable metals through potential cycling to remove at least a portion of the leachable metals such that an effective catalytic surface area of the fuel cell catalyst per a given amount of the catalyst metals is enhanced after removal of the at least a portion of the one or more leachable metals.
摘要:
A purging system for removing oxygen from a fuel cell system during a shutdown period for the fuel cell system. The purging system includes a separator having an inlet and an outlet; a first exhaust line for communicating a first exhaust gas stream from an outlet of the fuel cell system to the separator inlet during the shutdown period of the fuel cell system; and a second exhaust line for communicating a second exhaust gas stream to an inlet of the fuel cell system for delivering the second exhaust gas stream to the fuel cell system during the shutdown period. The separator removes oxygen from the first exhaust gas stream such that the first stream nitrogen molar volume is lower than the second steam nitrogen molar volume and the first stream oxygen molar volume is higher than the second stream oxygen molar volume.
摘要:
According to at least one aspect of the present invention, a layered catalyst having an active area is provided. In at least one embodiment, the layered electrode includes a first catalyst layer having a first noble metal concentration and a first ionomer concentration, and a second catalyst layer disposed next to the first catalyst layer, the second catalyst layer having a second noble metal concentration different from the first noble metal concentration and a second ionomer concentration different from the first ionomer concentration. In at least another embodiment, the metallic alloy includes a metallic alloy of platinum, nickel, and cobalt.