Abstract:
Ceramic articles, particularly ceramic cores and molds for an investment casting and combinations of ceramic cores and molds are produced using temporary molds, patterns or models made by a rapid prototyping or solid free-form manufacturing process. The molds, cores and patterns are contacted with ceramic slurry, which is then solidified by lowering the temperature of the slurry. What was liquid in the original slurry is then removed by sublimation leaving behind a ceramic article having a configuration, which is defined by the temporary tooling. The ceramic article so produced may be densified by sintering, and is used in a casting process.
Abstract:
A method for forming a tool such as a mold includes the steps of initially selecting a cooling channel configuration for the mold. The initial selected cooling channel is evaluated utilizing a computer program. The program analyzes whether there would be local hot or cool spots in the mold with the initially selected channel. The channel is then modified based upon this evaluation. The modified channel is again subjected to the evaluation. This iterative process continues until an acceptable cooling channel configuration is achieved. The invention utilizes a generally helical cooling channel.
Abstract:
A membrane electrode assembly includes an anode, a cathode, a membrane disposed between the anode and the cathode, a catalyzed layer in at least one position selected from the group consisting of between the cathode and the membrane and between the anode and the membrane, and an edge seal positioned along an edge of the membrane electrode assembly, wherein the membrane and the catalyzed layer extends into the edge seal.
Abstract:
An article comprising a substrate containing silicon and a barrier layer which functions as an environmental barrier coating and, more particularly, a barrier layer which comprises hafnium silicate and, optionally, zirconium silicate and a method for forming the hafnium silicate as a barrier coating.
Abstract:
A fuel system for an energy conversion device includes a deoxygenator system with an oxygen permeable membrane having a textured surface. A sweep gas and/or vacuum maintains an oxygen concentration differential across the membrane to deoxygenate the fuel. The textured surface increases the surface area of the oxygen permeable membrane. The textured surface of the oxygen permeable membrane is fabricated by pressing the textured surface into the oxygen permeable membrane with a microreplication-based tooling system. Another fabrication method presses the textured surface into a sacrificial film and the oxygen permeable membrane is then formed upon the sacrificial film to transfer the textured surface to the oxygen permeable membrane and the sacrificial film is then subsequently removed. Another fabrication method applies additional material to the oxygen permeable membrane through a porous sacrificial film.
Abstract:
A system and method that redistributes light from a light source. The controller can redistribute light to make an irradiance profile of the light source more uniform or make the irradiance profile match a fluid flow profile. The irradiance profile may be controlled by modifying light leakage from a plurality of waveguides or changing the light-directing properties of reflectors and/or lenses.
Abstract:
An air treatment system includes a filter and heating element, a plasma device, and a photocatalyst and UV light that cooperate to purify an air stream flowing through the air treatment system and protect the photocatalyst from passivating effects of certain contaminants. The air treatment system operates in two different modes. In the first mode, the air treatment system primarily draws air from and returns air to a space, and the heating element and plasma device are selectively shut off. In the second mode, the air treatment system regenerates the filter using the heating element to selectively heat the filter and release adsorbed contaminants. The plasma device is selectively turned on and chemically transforms the released contaminants into solid contaminant products. The solid contaminant products are deposited on a biased electrode of the plasma device. The UV light is turned off to ensure that the photocatalyst is inoperable during the release and transformation of the contaminants. Once deposited, the essentially immobile and inert solid contaminant products are unlikely to damage the photocatalyst.
Abstract:
A layered photocatalytic/thermocatalytic coating oxidizes contaminants that adsorb onto the coating into water, carbon dioxide, and other substances. The layered coating includes a photocatalytic outer layer of titanium dioxide that oxides volatile organic compounds. The coating further includes an intermediate layer of Group VIII noble metal doped titanium dioxide that oxidizes low polarity organic molecules. An inner layer of gold on titanium dioxide oxidizes carbon monoxide to carbon dioxide. When photons of the ultraviolet light are absorbed by the coating, reactive hydroxyl radicals are formed. When a contaminant is adsorbed onto the coating, the hydroxyl radical oxidizes the contaminant to produce water, carbon dioxide, and other substances.
Abstract:
A freeze tolerant fuel cell power plant (10) includes at least one fuel cell (12), a coolant loop (18) including a freeze tolerant accumulator (22) for storing and separating a water immiscible fluid and water coolant, a direct contact heat exchanger (56) for mixing the water immiscible fluid and the water coolant within a mixing region (72) of the heat exchanger (56), a coolant pump (21) for circulating the coolant through the coolant loop (18), a radiator loop (84) for circulating the water immiscible fluid through the heat exchanger (56), and a radiator (86) for removing heat from the coolant. The plant (10) utilizes the water immiscible fluid during steady-state operation to cool the fuel cell and during shut down of the plant to displace water from the fuel cell (12) to the freeze tolerant accumulator (22).