摘要:
The present invention provides a flexible power interface control system and a method of the same capable of flexibly changing the LDD setting for complying with different controlling states or different write strategies. The different controlling states or write strategies may be used for different disk types or different writing modes. The flexible LDD setting in accordance with the present invention is contributing to improve the recording performance and stability of an optical disk drive for complying with various disk types or different writing modes.
摘要:
The present invention provides a flexible power interface control system and a method of the same capable of flexibly changing the LDD setting for complying with different controlling states or different write strategies. The different controlling states or write strategies may be used for different disk types or different writing modes. The flexible LDD setting in accordance with the present invention is contributing to improve the recording performance and stability of an optical disk drive for complying with various disk types or different writing modes.
摘要:
The present invention discloses read and write power control methods and system for an optical recording device that records information on an optical disk having read-only areas. The read and write power control methods respectively introduce the steps of determining a specific level of a former power control signal output based on a former power control, and then according to the specific level, setting a predetermined level of a power control signal to induce a present power control for rapidly outputting a proper power of the pick-up head. Accordingly, the level transition of the read/write power control signal can be shortened and even eliminated. An unstable read/write power output for the pick-up head can be avoided.
摘要:
The present invention discloses a tilt adjustment system and method of an optical disk device with a pickup head, which includes a decoder for decoding the encoded information from an optical disk and checking whether error occurs during decoding. A decoding error calculator calculates a statistics corresponding to the decoding errors under the different tilts of the pickup head. A tilt control unit utilizes a specific algorithm to determine a decoding error rate, which is minimal than the other error rates within the statistics. Thus, an optimal tilt value can be decided upon the minimal error rate to adjust the tilt of the pickup head.
摘要:
A servo system of an optical storage device and related method for generating a servo signal. The servo system includes a pick-up head for detecting signals reflected from an optical disc to generate a plurality of detecting signals; a gain stage coupled to the pick-up head for determining a gain value according to an output of the pick-up head and for adjusting the magnitude of the detecting signals according to the gain value; and a servo signal generator coupled to the gain stage for generating the servo signal according to the adjusted detecting signals outputted from the gain stage.
摘要:
Methods and apparatuses for generating a protection window signal for use in header detection of an optical storage medium are disclosed. One of the methods involves: extracting a maximum level of an RF-sum signal derived from the optical storage medium to generate a first level value; extracting at least one of DC level and bottom level of the RF-sum signal to generate a corresponding second level value; calculating a reference level according to the first and second level values; and comparing the RF-sum signal with the reference level to determine a protection window signal. When the accessing of the optical storage medium is switched from a first area with a first reflectivity to a second area with a second reflectivity, the response speed of extracting the DC level/bottom level of the RF-sum signal, the weighting of the second level value, or the DC level of the RF-sum signal is adjusted.
摘要:
A power adjusting method for a pickup head accessing an optical disc. The method includes identifying a target data transfer rate utilized by the PUH for accessing the optical disc; calculating an appropriate laser power according to the target data transfer rate; and accessing the optical disc by the PUH at the target data transfer rate with the appropriate laser power.
摘要:
The present invention discloses read and write power control methods and system for an optical recording device that records information on an optical disk having read-only areas. The read and write power control methods respectively introduce the steps of determining a specific level of a former power control signal output based on a former power control, and then according to the specific level, setting a predetermined level of a power control signal to induce a present power control for rapidly outputting a proper power of the pick-up head. Accordingly, the level transition of the read/write power control signal can be shortened and even eliminated. An unstable read/write power output for the pick-up head can be avoided.
摘要:
An optical data recording/reproducing system comprises a data slicer and a data extractor, wherein the data slicer receives the analog RF signal from the identification area and generates a digital mask signal and a digital pulse signal, and the reference clock generator comprises a phase-locked loop for receiving the digital pulse signal and the digital mask signal and generates the reference clock signal to the data extractor by performing phase-locked loop control, so that the data extractor extracts an identification area data signal and an identification area clock signal from the digital mask signal according to the reference clock signal.
摘要:
The invention provides a method for determining the layer type of a blu-ray disk. First, a laser beam is focused on a target layer of the blu-ray disk. Reflection of the laser beam from the target layer is the detected to obtain a reflection signal. The reflection signal is then processed to generate a first tracking error signal and a second tracking error signal. Magnitudes of the first tracking error signal and the second tracking error signal are then measured. The magnitude of the second tracking error signal is then subtracted from the magnitude of the first tracking error signal to obtain a difference value. Finally, the layer type of the target layer is determined by comparing the difference value with the first predetermined threshold.