Abstract:
The invention is related to an optical lens, a light-emitting diode optical component and a light-emitting diode illumination lamp. The optical lens formed as a semi-spherical shape includes an uplifting spherical surface and a bottom surface corresponding to the spherical surface, and the bottom surface includes an inward space concave to the spherical surface and formed with a free surface corresponding to the spherical surface. The free surface is axially-symmetrical formed as rotational molding with respect to an axis connected from the focus to a center point of the spherical surface, to form the free surface with a similar Gaussian distribution curve provided on a section vertically cut from the spherical surface to the bottom surface. A light-emitting diode is disposed below the focus of the optical lens. The special outline structure of the optical lens can provide a uniform luminance distribution on an illuminating area.
Abstract:
A diffusion plate having microstructures with two lengthy and slant faces and its relevant backlight module as well as optical device includes an optical base and a diffusion plate with pluralities of microstructures; wherein, the microstructures on the optical base are located by different allocation, and an angle is defined by the cooperation of two longitude and slant faces of each microstructure. The above arrangements substantially impinge on controlling the light return and transmission of the backlight module or the optical device including a brightness enhancement film, a light source, and a reflecting plate disposed thereon, thereby increasing the uniformity of backlight through the optical reflection and refraction.
Abstract:
A heat dissipation apparatus includes a plurality of fins and a two-phase heat exchange device connected to the fins. The two-phase heat exchange device includes a main body and a continuous wick structure. The main body forms a closed space therein, and the continuous wick structure is disposed on the entire inner surface of the main body. Methods for manufacturing a two-phase heat exchange device and a heat dissipation apparatus are also introduced.
Abstract:
A system for a first device to initialize a second device is disclosed. The initialization bus is coupled between the first device and the second device. During an initialization period, the first device triggers at least one transmission command through the initialization bus to transmit at least one initial value to the second device via the initialization bus.
Abstract:
A heat dissipation module includes a heat column and a plurality of heat dissipation fins disposed outside of the heat column and connected with the heat column. The heat column has a column body and a base, and the column body has a top portion and a sidewall ringed with the top portion. The sidewall and the top portion are integrally formed. The base is disposed opposite to the top portion, and the base has an indentation for allowing an end of the sidewall of the column body to insert so as to form a closed space between the base and the column body. The base further has an annular protrusion close to the indentation, and after the end of the sidewall of the column body is inserted into the indentation of the base, the annular protrusion is processed to be filled between the indentation and the sidewall so as to tightly assemble the base and the column body.
Abstract:
A light guide plate having micro-reflectors is to increase luminance of the light guide plate by changing light route. The light guide plate includes an incidence plane, an illuminating plane, and a bottom. Each of the micro-reflectors is disposed at the bottom and intersected with the light guide plate in a direction heading for a recess provided at the bottom of the light guide plate, and comprises a light reflection plane located between the incidence plane and the illuminating plane to define an angle θ. The light reflection plane is an arc quadrilateral or a sector when observed from top of the illuminating plane. The arc quadrilateral has two concentric arc sides parallel with each other.
Abstract:
A heat pipe and manufacturing method thereof. The manufacturing method includes steps of: providing a pipe; shaping the pipe by bending or pressing according to requirements of a heat-dissipation module of an electronic device; inserting a molding bar into the pipe; forming a wick structure in the pipe; separating the molding bar from the pipe; and adding a working fluid to the pipe, wherein the working fluid is confined in a closed space of the pipe. The pipe is shaped before formation of the wick structure therein to prevent damage to the wick structure.
Abstract:
A heat dissipation apparatus and a vapor chamber thereof. The heat dissipation apparatus comprises a heat sink and a vapor chamber for dissipating heat from a heat source of an electric device. The vapor chamber comprises a heat-absorption region, a heat-dissipation region, a working fluid, a wick structure and at least one buffer region. The working fluid in the heat-absorption region is vaporized while absorbing heat in the heat-absorption region from the heat source, and the vaporized working fluid condenses in the heat-dissipation region after latent heat thereof is released. The capillarity of the wick structure drives the working fluid returning to the heat-absorption region from the heat-dissipation region, and the buffer regions include a reservoir for accessing the working fluid. The heat-dissipation apparatus equipped with a vapor chamber having buffer regions can reduce entire weight and shorten distance during heat conduction so that heat dissipation efficiency is increased.
Abstract:
A method for manufacturing a two-phase heat exchange device is provided. The method includes the steps of providing a container having an opening and a first wick structure disposed on the inner surface thereof, adding a predetermined material into the container, providing an cover and joining the cover with the container to construct a main body of the two-phase heat exchange device, wherein the cover seals the opening to form a closed space within the main body, and forming a second wick structure on the inner surface of the cover, wherein the first and second wick structures form a continuous structure covering the entire inner surface of the main body.
Abstract:
A heat dissipation module includes a plurality of fins and a heat pipe connected with the fins. The heat pipe includes a body, which forms an enclosed space, and an inner ring. A wick structure is disposed on the inner surface of the body, and the inner ring is disposed in the enclosed space for increasing a structural strength of the heat pipe. The inner ring is pressed against the top and bottom of the body or in contact with the wick structure located at the top and the bottom of the body, respectively. The inner ring includes at least one opening located close to the top of the body for communicating inside and outside of the inner ring.