Abstract:
A method of forming an integrated circuit device using ion implantation to improve the adhesion of plasma nitride to spin-on-glass is achieved. Semiconductor device structures are provided in and on a substrate where conductive connections are planned between the device structures and planned conductive traces overlying a planned interlevel dielectric layer. An insulating oxide layer is deposited overlying the device structures. A spin-on-glass layer is coated overlying the insulating oxide layer. The spin-on-glass layer is dried. The spin-on-glass layer is ion implanted to form an amorphous, silicon rich, adhesion layer at the top surface of the spin-on-glass layer. The spin-on-glass layer is cured. A first plasma-enhanced silicon nitride layer deposited overlying the adhesion layer of the spin-on-glass and completing the interlevel dielectric layer. Via openings are etched through to the top surfaces of the semiconductor device. A conductive layer is deposited to fill the via openings and is etched to form the conductive traces. A second plasma-enhanced silicon nitride layer is deposited to complete the integrated circuit.
Abstract:
A method to provide low dielectric constant voids between adjacent conducting lines in a semiconductor device. Narrowly spaced metal lines are formed on the substrate surface. A dielectric layer is deposited overlying the metal lines and the substrate surface. A high water content, water saturated, environment is created for the spin-on-glass process. A pseudo-water condition exists on the surface of the dielectric layer prior to the deposition of the spin-on-glass layer. The spin-on-glass layer is deposited overlying the dielectric layer. Voids form in the spin-on-glass layer between the narrowly spaced metal lines. The spin-on-glass layer is baked. The integrated circuit device is completed.