Abstract:
A control device for a rectifier of a switching converter that includes a rectifier with at least one MOS transistor and a control device that is configured to generate a turn on and off signal for the at least one transistor. The control device also includes a measuring circuit to measure the conduction time of the body diode of the at least one transistor during each converter switching half-cycle. The control device is configured to, cycle by cycle: verify if the drain-source voltage of the at least one transistor is greater or less than a voltage threshold, and if the drain-source voltage is greater than the voltage threshold to turn off the at least one transistor, measure the conduction time of the body diode and increase the voltage threshold by a quantity in the next switching cycle.
Abstract:
A control device detects zero crossings of a current through a rectifier transistor during plural cycles; generates a turn-on signal of the transistor and inserts a turn-on delay equal to a fixed first quantity from the start time of for each cycle. The control device starts counting consecutive cycles after inserting the turn-on delay; detects whether a zero crossing of the current through the transistor after turning on said transistor has occurred; if no zero crossing is detected before counting a number N of consecutive cycles, decreases the turn-on delay by a fixed second quantity for the next cycle; if a zero crossing is detected, maintains turned on the transistor; if the turn-on delay is smaller than first quantity, increases the turn-on delay o for the next switching cycle; and if the turn-on delay is equal to the first quantity, maintains the turn-on delay for the next switching cycle.
Abstract:
Powering the internal circuitry, that is the controller of the power switch of a step-down DC-DC converter for a broad range of values of output voltage and achieving an enhanced energy saving in a low load conditions of operation is made possible by a method and implementing circuit based on defining two distinct thresholds of discrimination of the output voltage, both tied to a reference voltage, for generating two respective control signals and defining, from logical combinations of said two control signals, three distinct regions of operation of the converter upon the varying of electrical parameters, respectively identified by logical combinations of a pair of enabling signals.
Abstract:
A control device of a switching converter controls the closing and opening of a switch of the converter that regulates the operation of an inductor. The control device includes a ramp voltage generator, a switch control circuit configured to close the switch based on a comparison of the ramp voltage with a first signal and a generator control circuit configured to control the ramp voltage generator based on a value of a second signal representative of a current flowing through the inductor of the converter, in comparison with the value of a third signal.
Abstract:
A control device controls a rectifier of a switching converter that is supplied with an input voltage and provides an output current. The rectifier is configured to rectify the output current of the converter and has at least one transistor. The control device, when the at least one transistor is turned off, provides a slow discharge path to ground in a normal operation condition and provides a fast discharge path to ground for discharging the control terminal of the at least one transistor in response to detecting a zero cross event of the current flowing through said at least one transistor.
Abstract:
The present invention relates to a driving method for flat panel display devices, particularly a driving method combining a Multi Line Addressing (MLA) technique and a Frame Rate Control (FRC) technique, for flat panel display devices such as Liquid Crystal Display (LCD). In an embodiment the method of driving an image display device comprises the following steps: dividing row electrodes of an image device, having a plurality of row electrodes and a plurality of column electrodes, into a plurality of subgroups; selecting one of the plurality of said subgroups having a prefixed number of electrodes; performing a gray scale display by a frame rate control (FRC) by using a prefixed number of frames and a prefixed number of bits representing the gray levels; decomposing one of said frame in a number of time instants proportional to said prefixed number of electrodes; putting the bits representing the gray levels equally distributed in said prefixed number of frames.
Abstract:
A transition mode power factor correction converter comprising a boost inductor, a switch, a diode, and output tank capacitor, has circuit means of limitation of the off-time interval of the switch to a fraction of the off-time interval, “complementary” to the on-time interval that is normally controlled for regulating the output voltage, during part of a cycle of a rectified sinusoidal voltage waveform input to the converter, when the current flowing in the inductor reaches a maximum threshold, causing the mode of operation of the device to switch from transition mode to continuous current mode for a middle phase angle region of a rectified sinusoidal input voltage waveform, under high load conditions, defined by said maximum current threshold. Current peaks amplitude and ripple are effectively reduced for same output power.
Abstract:
A control device controls a switching converter. The converter has an input alternating supply voltage, a regulated direct voltage on the output terminal, and a switch connected to an inductor. The control device controls the closing and opening time period of said switch for each cycle and receives a first input signal representative of the current flowing through one element of the converter. The control device comprises a counter configured to count a time period, a comparator configured to compare said first input signal with a second signal, digital control block configured to control the closing and opening of said switch and to activate said counter to start the counting of said time period when the said first input signal crosses said second signal, with said switch being closed. The digital control block is configured to open the switch when the counter finishes the counting of said time period.
Abstract:
A control device for a transistor of a switching converter rectifier generates a control signal of the transistor and comprises a circuit to measure the conduction time of the body diode of the transistor cycle by cycle. When the conduction time is greater than a first threshold, the off time instant of the transistor is delayed by a first quantity in the next cycles, until the conduction time is less than the first threshold and greater than a second threshold. When the conduction time is between the first and second thresholds, the off time instant is delayed by a fixed second quantity in the next cycles until the conduction time is lower than the second threshold, with the second quantity less than the first quantity. When the conduction time is lower than the second threshold, the off time instant is advanced by the second quantity in the next cycle.
Abstract:
A control device for a rectifier of a switching converter that includes a rectifier with at least one MOS transistor and a control device that is configured to generate a turn on and off signal for the at least one transistor. The control device also includes a measuring circuit to measure the conduction time of the body diode of the at least one transistor during each converter switching half-cycle. The control device is configured to, cycle by cycle: verify if the drain-source voltage of the at least one transistor is greater or less than a voltage threshold, and if the drain-source voltage is greater than the voltage threshold to turn off the at least one transistor, measure the conduction time of the body diode and increase the voltage threshold by a quantity in the next switching cycle.