摘要:
A method of fabricating a non-volatile memory is described. A substrate having stacked gate structures thereon is provided. Each stacked gate structure includes a select gate dielectric layer, a select gate and a cap layer. A source region and a drain region are formed in the substrate. The source region and the drain region are separated from each other by at least two stacked gate structures. A tunneling dielectric layer is formed over the substrate and then a first conductive layer is formed over the tunneling dielectric layer. The first conductive layer is patterned to form floating gates in the gaps between the stacked gate structures. After forming an inter-gate dielectric layer over the substrate, a second conductive layer is formed over the substrate. The second conductive layer is patterned to form mutually linked control gates in the gaps between neighboring stacked gate structures.
摘要:
A flash memory cell including a p-type substrate, an n-type deep well, a stacked gate structure, a source region, a drain region, a p-type pocket doped region, spacers, a p-type doped region and a contact plug is provided. The n-type deep well is set up within the p-type substrate and the stacked gate structure is set up over the p-type substrate. The stacked gate structure further includes a tunneling oxide layer, a floating gate, an inter-gate dielectric layer, a control gate and a cap layer sequentially formed over the p-type substrate. The source region and the drain region are set up in the p-type substrate on each side of the stacked gate structure. The p-type pocket doped region is set up within the n-type deep well region and extends from the drain region to an area underneath the stacked gate structure adjacent to the source region. The spacers are attached to the sidewalls of the stacked gate structure. The p-type doped region is set up within the drain region. The p-type doped region passes through the junction between the drain region and the p-type pocket doped region but is separated from the spacer by a distance. The contact plug is set up over the drain region and is electrically connected to the p-type doped region.
摘要:
A non-volatile memory is provided. A plurality of stacked gate structure is formed on the substrate. The stacked gate structure includes, upward from the substrate surface, a select gate dielectric layer, a select gate and a cap layer. The spacers are disposed on the sidewalls of the stacked gate structures. The control gates are disposed over the substrate filling the space between the stacked gate structures and are mutually connected together. The floating gates are disposed between the stacked gate structures and positioned between the control gate and the substrate. The inter-gate dielectric layers are disposed between the control gates and the floating gates. The tunneling dielectric layers are disposed between the floating gates and the substrate. The source/drain regions are disposed in the substrate outside the two outermost stacked gate structures.
摘要:
A method of manufacturing a non-volatile memory cell is described. The method includes forming a first dielectric layer on a substrate and then forming a patterned mask layer with a trench on the first dielectric layer. A pair of charge storage spacers is formed on the sidewalls of the trench. The patterned mask layer is removed and then a second dielectric is formed on the substrate covering the pair of charge storage spacers. A conductive layer is formed on the second dielectric layer and subsequently patterned to form a gate structure on the pair of charge storage spacers. Portions of the second and first dielectric layers outside the gate structure are removed and then a source/drain region is formed in the substrate on each side of the conductive gate structure.
摘要:
A method of forming a flash memory cell. A tunnel oxide layer, a floating gate layer, and a dielectric layer are formed on a substrate. A control gate layer is formed on the dielectric layer and then etched to form two control gates. The control gates are oxidized to form a plurality of second oxide layers on surfaces of the control gates and aside the control gates. The dielectric layer and the floating gate layer are etched by utilizing the second oxide layers as a mask to form a floating gate underneath each of the control gates. A source is formed between the floating gates. The floating gates and the substrate are oxidized to form a plurality of first oxide layers aside the floating gates and form a third oxide layer on a surface of the source.
摘要:
A flash memory device includes a substrate having a trench, a deep N-type well region in the substrate, a stacked gate structure on the substrate, a first and a second spacer on a sidewall of the stacked gate, wherein the first spacer is connected with the top of the trench, a source region in the substrate under the first spacer, a drain region in the substrate under the second spacer, a P-type well region between the stacked gate and the deep N-type well region, wherein the junction between the two well regions is higher than the bottom of the trench, a doped region along the bottom and the sidewall of the trench, wherein this doped region is connected with the source region and isolates the P-type well region from the contact formed in the trench, the contact being electrically connected to the source region.
摘要:
A method of fabricating a non-volatile memory is described. A substrate having stacked gate structures thereon is provided. Each stacked gate structure includes a select gate dielectric layer, a select gate and a cap layer. A source region and a drain region are formed in the substrate. The source region and the drain region are separated from each other by at least two stacked gate structures. A tunneling dielectric layer is formed over the substrate and then a first conductive layer is formed over the tunneling dielectric layer. The first conductive layer is patterned to form floating gates in the gaps between the stacked gate structures. After forming an inter-gate dielectric layer over the substrate, a second conductive layer is formed over the substrate. The second conductive layer is patterned to form mutually linked control gates in the gaps between neighboring stacked gate structures.
摘要:
A flash memory cell structure has a substrate, a select gate, a first-type doped region, a shallow second-type doped region, a deep second-type doped region, and a doped source region. The substrate has a stacked gate. The select gate is formed on the substrate and adjacent to the stacked gate. The first-type ion formed region is doped in the substrate and adjacent to the select gate as a drain. The shallow second-type doped region is formed on one side of the first-type doped region below the stacked gate. The deep second-type doped region, which serves as a well, is formed underneath the first-type doped region with one side bordering on the shallow second-type doped region. The doped source region is formed on a side of the shallow second-type doped region as a source.
摘要:
A non-volatile memory is provided. A plurality of stacked gate structure is formed on the substrate. The stacked gate structure includes, upward from the substrate surface, a select gate dielectric layer, a select gate and a cap layer. The spacers are disposed on the sidewalls of the stacked gate structures. The control gates are disposed over the substrate filling the space between the stacked gate structures and are mutually connected together. The floating gates are disposed between the stacked gate structures and positioned between the control gate and the substrate. The inter-gate dielectric layers are disposed between the control gates and the floating gates. The tunneling dielectric layers are disposed between the floating gates and the substrate. The source/drain regions are disposed in the substrate outside the two outermost stacked gate structures.
摘要:
A method of forming a gate structure, including forming sequentially a gate dielectric layer, a conductive layer, a protective layer, a sacrificial layer, and a patterned mask layer over a substrate. The exposed sacrificial layer is removed by using the patterned mask layer as an etching mask and the protective layer as an etching stop layer. Spacers are formed on the sidewalls of the sacrificial layer. Subsequently, the exposed protective layer and the conductive layer are removed by using the spacers and the sacrificial layer as etching masks, so as to form gate structures. By forming the protective layer on the conductive layer, the present invention can avoid the top surface of each gate structure from generating sharp corners and also increase the width of each gate structure.