摘要:
The force or pressure sensor array of the present invention effectively has both flexibility and elasticity. Since the substrate itself is a kind of a polymer material, the substrate can be bent or expanded. Although silicon, which is a material of the semiconductor strain gauge, is easily broken and solid, mechanical flexibility can be secured if it is fabricated extremely thin. To this end, particularly, disclosed is a flexible force or pressure sensor array using semiconductor strain gauges 110, the sensor array comprising: a substrate 10 including: the semiconductor strain gauges 110 in which a plurality of elements formed in a certain array pattern is deformed by force or pressure, a pair of polymer film layers 120 and 130 having film surfaces contacted facing each other and containing the semiconductor strain gauge 110 between the film surfaces contacted with each other, and a pair of signal line layers formed on top and bottom surfaces of an insulating layer using either of the pair of polymer film layers 120 and 130 as the insulating layer and connected to the elements 111 of the array pattern to form electrodes, for fetching deformation signals outputted due to deformation of the elements 111 to outside; and a pair of elastomer layers 20 and 30 formed on both sides of the substrate 10 to contain the substrate 10 inside.
摘要:
A slim mouse for mobile appliances includes a lower polymer film having a metal layer on an upper surface of the lower polymer film, an upper polymer film having a metal layer on a lower surface of the upper polymer film, a donut force sensor array including multiple force sensors, a weight-bumper spacer including a donut sensor portion and a click-detection sensor portion, a pad including a donut sensor portion and a click-detection sensor portion, and a click-detection force sensor.
摘要:
A method for implementing a mouse algorithm using a plurality of pressure sensors is disclosed. The pressure sensors are used to freely move and rotate a mouse cursor in X, Y and Z directions, so that they can be applied as interface units for a slim device such as a mobile phone. The mouse algorithm processes a touch input. The pressure sensors are arranged in a ring shape and provide output values successively varying with magnitudes of forces applied thereto or pressures applied thereto. A moving direction of the mouse cursor is determined depending on a contact point detected through the output values and a moving distance and moving speed of the mouse cursor are determined in proportion to the magnitudes of the forces.
摘要:
The present invention relates to a touch input device and a method of acquiring a contact location and the intensity of force using the same. The touch input device may include a touch panel with which a pointing object is brought in contact, a location-processing unit for receiving a signal regarding a contact location from the touch panel and processing information about the contact location of the pointing object, an intensity-processing unit for receiving a signal regarding a change in capacitance between an upper electrode layer of the touch panel and the pointing object from the touch panel and processing information about an intensity of force of the pointing object, and a switching unit for selectively electrically connecting the location-processing unit and the intensity-processing unit to the touch panel, so that information about the location and the intensity of force, of the pointing object, can be acquired.
摘要:
The present invention relates to a tactile transmission method and system in which when a user applies an action force to a tactile feedback apparatus on a transmission-side, a reaction force which reflects attributes of the action force and is proportional to the attributes is generated from a tactile feedback apparatus on a reception side so as to be transferred to a reception-side user. As described above, according to the tactile transmission method and system using tactile feedback apparatuses of the present invention, when a transmission-side user applies an action force to a tactile feedback apparatus on a transmission-side, a reaction force which reflects attributes of the action force and is proportional to the attributes is wirelessly transferred to a reception-side user located at a remote place, thereby enabling exchange of various contact information.
摘要:
The present invention relates to a structure for attaching tactile sensors to a curved surface, comprising a sensor fixing unit configured to have at least part of one surface curved and to have a plurality of sensor insertion grooves, crossing each other, formed in the one surface in a matrix form; tactile sensor units formed in a matrix form, inserted into the respective sensor insertion grooves, and configured to detect external force; sealing units configured to seal the respective sensor insertion grooves; and a support unit configured to come in contact with one face of the sealing units or the sensor fixing units and to support the sensor fixing units. Accordingly, the tactile sensors can be easily attached to a curved surface, and mass production is possible.
摘要:
Disclosed are a touch screen using contact resistance type tactile sensors, which can adjust the density of an object to be displayed on a screen based on the variation of a contact position and a contact force and achieve a multi-touch recognizing function, a method for manufacturing the same, and an algorithm implementing method for the same. The touch screen using contact resistance type tactile sensors includes a lower display panel such as a liquid crystal display (LCD), a transparent upper substrate, and a plurality of contact resistance type tactile sensors arranged between the upper substrate and the lower panel along the edge of the screen. The touch screen senses a contact position and a contact force based on a contact resistance generated from the contact resistance type tactile sensors, and has a multi-touch recognizing function.
摘要:
Provided are a touch input device capable of acquiring information on whether a pointing object touches a touch panel, information on a touch point of the pointing object touching the touch panel and information on the magnitude of touch force of the pointing object and a method of controlling the same. The touch input device includes a touch panel having a plurality of electrically separated upper electrode strips formed on one side thereof and touched by a pointing object, a first switch electrically connecting the plurality of upper electrode strips to form a single electrode or two electrodes, and an information generator generating at least one of information on a touch point of the pointing object and information on the magnitude of touch force of the pointing object and information on whether the pointing object approaches the touch panel on the basis of a signal received from the touch panel according to a switched state of the first switch.
摘要:
The present invention relates to a full-browsing display method of a touch screen apparatus using tactile sensors, and more specifically, to a full-browsing display method, in which after setting a reference force Fs, if a user sets any one of an enlargement mode, a reduction mode, and a screen movement mode for a web-site screen displayed on the touch screen apparatus and applies an action force Fin at a position of the web-site screen where a change is desired, enlargement or reduction of the screen is determined depending on the strength of the action force, and movement of the screen or a click is determined by comparing the action force with the reference force Fs.
摘要:
Disclosed herein are a mouse with capacitance sensors, a method for manufacturing the mouse and a method for constructing an algorithm for processing an input corresponding to force applied by a user's finger to the mouse. The mouse with capacitance sensors includes a bottom plate having a center point, a plurality of electrodes formed at regular intervals on the top face of the bottom plate and arranged apart from the center point of the bottom plate by an equal distance, a top plate bonded to the top faces of the electrodes and deformed by force applied by a pointing object, and an adhesive layer formed around the top plate and the bottom plate to combine the top plate and the bottom plate. When the pointing object touches the top plate, capacitance sensors are formed between the pointing object and the electrodes to recognize a travel distance, a travel direction and a moving speed of a cursor through the magnitude and direction of force applied by the pointing object.