Abstract:
A scavenge gear pump and its method of operation is described. The scavenge gear pump defines a pump chamber in which a pair of toothed gears are rotatably driven to pump an oil-air mixture from an inlet passage where the oil mixture is at low pressure, to an outlet passage where the air and oil has separated and is at high pressure. The gears are intermeshed in a meshing area between the inlet and the outlet passages and an oil nozzle is provided in a downstream region disposed in relation to the gear meshing area to inject oil under pressure in that area to occupy the volumes between the intermeshed gear teeth whereby to prevent air bubbles from being carried back to an upstream region adjacent the inlet passage. Accordingly, the volumetric efficiency of the pump is improved and it is more tolerant to back pressure.
Abstract:
A scavenge gear pump and its method of operation is described. The scavenge gear pump includes a pump housing defining a pump chamber, an inlet passage, an outlet passage, and a fluid injection passage in fluid communication with the pump chamber. The inlet passage receives an admixed fluid at low pressure and the outlet passage the admixed fluid at high pressure from a downstream region of said pump chamber. The fluid injection passage receives a third fluid at an injection pressure for input into the pump chamber. A pair of driveable gears is disposed in the pump chamber. The third fluid is injected directly into the gear meshing area of the pump chamber through the fluid injection passage so that the third fluid fills voids at least between said intermeshing teeth of the driveable gears and so that the second fluid does not occupy the gear meshing area.
Abstract:
A gas turbine engine having a coupling element for coupling a first shaft to a second shaft, the second shaft being substantially axially aligned with the first shaft, the coupling element provided with an exterior surface that engages an opposing interior surface of the first shaft and an interior surface that engages an opposing exterior surface of the second shaft to facilitate torque transfer between the first shaft and the second shaft when rotated together, wherein the coupling element and at least one of the first and second shafts cooperate to define at least one fluid passageway therebetween.
Abstract:
A gas turbine engine recuperator recuperator including exhaust passages providing fluid flow communication between an exhaust inlet and an exhaust outlet, the exhaust inlet being oriented to receive exhaust flow from a turbine of the engine and the exhaust outlet being oriented to deliver the exhaust flow to atmosphere, the exhaust passages having an arcuate profile in a plane perpendicular to a central axis of the recuperator to reduce a swirl of the exhaust flow. Air passages are in heat exchange relationship with the exhaust passages and providing fluid flow communication between an air inlet and an air outlet, design to sealingly respective plenum of the gas turbine engine.
Abstract:
A gas turbine engine recuperator including a plurality of independent arcuate segments, each segment having an inlet connection member designed to sealingly engage a plenum in fluid flow communication with the compressor discharge, and an outlet connection member designed to sealingly engage a plenum containing the combustor. One of the inlet and outlet connection members is a rigid member forming a rigid connection to the respective plenum, and the other of the inlet and outlet connection members includes a flexible member and forms a floating connection to the respective plenum, the floating connection allowing relative movement between the segment and a remainder of the gas turbine engine.
Abstract:
A gas turbine engine recuperator including a plurality of independent arcuate segments, each segment having an inlet connection member designed to sealingly engage a plenum in fluid flow communication with the compressor discharge, and an outlet connection member designed to sealingly engage a plenum containing the combustor. One of the inlet and outlet connection members is a rigid member forming a rigid connection to the respective plenum, and the other of the inlet and outlet connection members includes a flexible member and forms a floating connection to the respective plenum, the floating connection allowing relative movement between the segment and a remainder of the gas turbine engine.
Abstract:
A gas turbine engine having an electric generator includes a transmission shaft extending along a longitudinal axis of the engine and drivingly interconnecting a turbine shaft of the engine and a rotor shaft of the electric generator. The transmission shaft is engaged by splined mating connections with the turbine shaft and the rotor shaft. The transmission shaft has a shear neck defining a reduced radial wall thickness with respect to a remainder of the transmission shaft such as to provide a weakened region of the transmission shaft. An annular support structure, concentric with and surrounding the transmission shaft, is axially located between the shear neck and a forward end of the transmission shaft engaged to the turbine shaft, and includes a bearing operable to rotationally support the transmission shaft.
Abstract:
A heat management system of a gas turbine engine for cooling oil and heating fuel, includes an oil circuit having parallel connected first and second branches. The first branch includes a fuel/oil heat exchanger and a first fixed restrictor in series and the second branch includes an air cooled oil cooler and a second fixed restrictor. The first and second fixed restrictors limit respective oil flows through the first and second branch differently, in response to viscosity changes of the oil caused by temperature changes of the oil during engine operation to modify oil distribution between the first and second branches.
Abstract:
A gas turbine engine recuperator system includes a heat recuperator positioned in a gas turbine exhaust gas duct for recovering heat from turbine exhaust gases to preheat a compressor flow being supplied to the combustor. A continuous bleed flow of the turbine exhaust gases is provided to bypass the heat recuperator. The continuous bleed flow of the turbine exhaust gases is adjustable to reduce turbine exhaust gas pressure loss at a high engine operation level and to provide efficient heat recovery at low and/or medium engine operation levels.
Abstract:
An active tip clearance control (ATCC) system of a gas turbine engine includes an ejector to selectively drive an air flow passing through the ATCC system. A high pressure air flow as a motive flow of the ejector is controlled by a valve according to engine operation requirements.