摘要:
A neutron detection system comprising a radiation portal monitor is disclosed. The radiation portal monitor includes a neutron moderator sheet and a neutron-sensing panel and is configured to receive incoming neutrons through a neutron collection portal area. The neutron-sensing panel comprises a neutron-sensing material optically coupled to a plurality of optical fibers such that the neutron moderator sheet and the neutron-sensing panel are disposed substantially parallel to the neutron collection portal area.
摘要:
A neutron sensing material detector includes an anode; a cathode; and a semiconductor material disposed between the anode and the cathode. An electric field is applied between the anode and cathode. The semiconductor material is composed of a ternary composition of stoichiometry LiM2+GV and exhibits an antifluorite-type ordering, where the stoichiometric fractions are Li=1, M2+=1, and GV=1. Electron-hole pairs are created by absorption of radiation, and the electron-hole pairs are detected by the current they generate between the anode and the cathode. The anode may include an array of pixels to provide improved spatial and energy resolution over the face of the anode. The signal value for each pixel can be mapped to a color or grey scale normalized to all the other pixel signal values for a particular moment in time. A guard ring or guard grid may be provided to reduce leakage current.
摘要:
A radiation detector includes a neutron sensing element comprising a neutron scintillating composite material that emits a first photon having a first wavelength and an optical waveguide material having a wavelength-shifting dopant dispersed therein that absorbs the first photon emitted by the neutron scintillating composite material and emits a second photon having a second, different wavelength, and a functionalized reflective layer at an interface between the neutron scintillating composite material and the optical waveguide material. The functionalized reflective layer allows the first photon emitted by the neutron scintillating composite material to pass through and into the optical waveguide material, but prevents the second photon emitted by the optical waveguide material from passing through and into the neutron scintillating composite material. The photons emitted from the neutron sensing element are collected and channeled through the optical waveguide material and into a photosensing element optically coupled to the neutron sensing element.
摘要:
A radiation detector includes a neutron sensing element having a neutron scintillating material at least partially surrounded by an optical waveguide material; and a photosensing element optically coupled to the neutron sensing element. The photons emitted from the neutron sensing element are collected and channeled through the optical waveguide material and into the photosensing element.
摘要:
Dual modality detection devices and methods are provided for detecting nuclear material, the devices include a neutron detector including multiple neutron detection modules; and a gamma detector including multiple gamma detection modules, where the multiple neutron detection modules and the multiple gamma detection modules are integrated together in a single unit to detect simultaneously both gamma rays and neutrons.
摘要:
A semiconductor material for radiation absorption and detection comprising a composition of stoichiometry Li(M12+, M22+, M32+, . . . )(G1V, G2V, G3V, . . . ) and exhibiting an antifluorite-type order, where Li=1, (M12++M22++M32++ . . . )=1, and (G1V+G2V+G3V+ . . . )=1. The material provides two useful characteristics: [1] a high Li-site density, which when enriched in 6Li, produces exceptional neutron-absorbing capabilities and [2] a semiconducting band-gap for the efficient conversion of absorbed photon and neutron energies into electrical currents. These characteristics can be exploited in applications for power generation or the spectroscopic detection of gamma and neutron radiation. The material can be tailored so as to detect only gamma photons, detect only neutron particles, or simultaneously detect gamma photons and neutron particles.
摘要:
A radiation detector includes a neutron sensing element comprising a neutron scintillating composite material that emits a first photon having a first wavelength and an optical waveguide material having a wavelength-shifting dopant dispersed therein that absorbs the first photon emitted by the neutron scintillating composite material and emits a second photon having a second, different wavelength, and a functionalized reflective layer at an interface between the neutron scintillating composite material and the optical waveguide material. The functionalized reflective layer allows the first photon emitted by the neutron scintillating composite material to pass through and into the optical waveguide material, but prevents the second photon emitted by the optical waveguide material from passing through and into the neutron scintillating composite material. The photons emitted from the neutron sensing element are collected and channeled through the optical waveguide material and into a photosensing element optically coupled to the neutron sensing element.
摘要:
A neutron detection system comprising a radiation portal monitor is disclosed. The radiation portal monitor includes a neutron moderator sheet and a neutron-sensing panel and is configured to receive incoming neutrons through a neutron collection portal area. The neutron-sensing panel comprises a neutron-sensing material optically coupled to a plurality of optical fibers such that the neutron moderator sheet and the neutron-sensing panel are disposed substantially parallel to the neutron collection portal area.
摘要:
A radiation detector includes a neutron sensing element having a neutron scintillating material at least partially surrounded by an optical waveguide material; and a photosensing element optically coupled to the neutron sensing element. The photons emitted from the neutron sensing element are collected and channeled through the optical waveguide material and into the photosensing element.
摘要:
An integrated radiation detector having a pulse-mode operating photosensor optically coupled to a gamma sensing element and a neutron sensing element is disclosed. The detector includes pulse shape and processing electronics package that uses an analog to digital converter (ADC) and a charge to digital converter (QDC) to determine scintillation decay times and classify radiation interactions by radiation type. The pulse shape and processing electronics package determines a maximum gamma energy from the spectrum associated with gamma rays detected by the gamma sensing element to adaptively select a gamma threshold for the neutron sensing element. A light pulse attributed to the neutron sensing element is a valid neutron event when the amplitude of the light pulse is above the gamma threshold.