摘要:
Dual modality detection devices and methods are provided for detecting nuclear material, the devices include a neutron detector including multiple neutron detection modules; and a gamma detector including multiple gamma detection modules, where the multiple neutron detection modules and the multiple gamma detection modules are integrated together in a single unit to detect simultaneously both gamma rays and neutrons.
摘要:
Dual modality detection devices and methods are provided for detecting nuclear material, the devices include a neutron detector including multiple neutron detection modules; and a gamma detector including multiple gamma detection modules, where the multiple neutron detection modules and the multiple gamma detection modules are integrated together in a single unit to detect simultaneously both gamma rays and neutrons.
摘要:
The subject matter disclosed herein relates to X-ray imaging systems, and more specifically to digital X-ray imaging systems. In one embodiment, an imaging system includes an X-ray source configured to emit X-rays. The imaging system also includes an X-ray detector configured to detect the emitted X-rays and produce a corresponding electrical signal. The imaging system also includes a gantry configured to at least partially revolve the X-ray source and the X-ray detector about a primary rotational axis. The X-ray detector is coupled to the gantry so that a diagonal of the X-ray detector is oriented substantially perpendicular to the primary rotational axis.
摘要:
In one embodiment, a method of tomographic image construction includes performing sparsification on initial projection data for an object with a processor to provide sparsified projection data of the object. The method also includes backprojecting the sparsified projection data with the processor to provide a three-dimensional image of the object, and performing sparsification on the three-dimensional image with the processor to provide a sparsified image.
摘要:
A tomosynthesis system for forming a three dimensional image of an object is provided. The system includes an X-ray source adapted to irradiate the object with a beam of X-rays from a plurality of positions in a sector, an X-ray detector positioned relative to the X-ray source to detect X-rays transmitted through the object and a processor which is adapted to generate a three dimensional image of the object based on X-rays detected by the detector. The detector is adapted to move relative to the object and/or the X-ray source is adapted to irradiate the object with the beam of X-rays such that the beam of X-rays follows in a non arc shaped path and/or a center of the beam of X-rays impinges substantially on the same location on the detector from different X-ray source positions in the sector.
摘要:
A tomosynthesis system for forming a three dimensional image of an object is provided. The system includes an X-ray source adapted to irradiate the object with a beam of X-rays from a plurality of positions in a sector, an X-ray detector positioned relative to the X-ray source to detect X-rays transmitted through the object and a processor which is adapted to generate a three dimensional image of the object based on X-rays detected by the detector. The detector is adapted to move relative to the object and/or the X-ray source is adapted to irradiate the object with the beam of X-rays such that the beam of X-rays follows in a non arc shaped path and/or a center of the beam of X-rays impinges substantially on the same location on the detector from different X-ray source positions in the sector.
摘要:
Systems and method for reconstruction of x-ray images are provided. One method includes acquiring a plurality of image views using an x-ray imaging system, the plurality of image views defining a limited tomographic dataset. The method also includes performing three-dimensional (3D) image reconstruction using the plurality of image views in an iterative reconstruction, wherein the iterative reconstruction includes forming a linear combination based on a plurality of previous iteration results. The method further includes displaying an image based on the image reconstruction, wherein the image includes clinically relevant high-frequency detail information.
摘要:
Briefly in accordance with one embodiment, the present technique provides a multi-energy tomosynthesis imaging system. The system includes an X-ray source configured to emit X-rays from multiple locations within a limited angular range relative to an imaging volume. The imaging system also includes a digital detector with an array of detector elements to generate images in response to the emitted X-rays. The imaging system further includes a detector acquisition circuitry to acquire the images from the digital detector. The imaging system may also include a processing circuitry configured to decompose plurality of images based on energy characteristics and to reconstruct the plurality of images to generate a three-dimensional multi-energy tomosynthesis image.
摘要:
An imaging system for scanning a volume of interest in an object, the system includes a radiation source configured to traverse in a plurality of focal spot positions yielding a plurality of focal spot trajectories. Each focal spot trajectory defines a two dimensional focal spot projection in an image acquisition plane. Each of the focal spot positions comprise at least two positions at unequal distances from the image acquisition plane.
摘要:
A tomosynthesis system for forming a three dimensional image of an object is provided. The system includes an X-ray source adapted to irradiate the object with a beam of X-rays from a plurality of positions in a sector, an X-ray detector positioned relative to the X-ray source to detect X-rays transmitted through the object and a processor which is adapted to generate a three dimensional image of the object based on X-rays detected by the detector. The detector is adapted to move relative to the object and/or the X-ray source is adapted to irradiate the object with the beam of X-rays such that the beam of X-rays follows in a non arc shaped path and/or a center of the beam of X-rays impinges substantially on the same location on the detector from different X-ray source positions in the sector.