Abstract:
A method for matching each of a plurality of progenitor ion types to respective product or fragment ion types, comprising: generating the plurality of progenitor ion types over a time range by ionizing compounds eluting during the time range using an atmospheric pressure ion source; generating the product or fragment ion types within a pressure range of 750 mTorr to atmospheric pressure in an ionization chamber or first vacuum chamber; detecting abundances of the plurality of progenitor ion types and the product or fragment ion types using a mass analyzer; calculating a plurality of extracted ion chromatograms (XICs) relating to the detected abundances; automatically detecting and characterizing chromatogram peaks within each XIC; automatically generating synthetic analytical fit peaks; performing cross-correlation score calculations between each pair of synthetic analytical fit peaks; and recognizing matches based on the cross correlation scores.
Abstract:
A display interface buffer includes a general purpose memory to store data capable of being displayed on a panel, a plurality of display drivers to receive data from the general purpose memory, each of the display drivers to drive a different portion of the panel with the data, and processor or a direct memory access controller to access data in the general purpose memory and to provide the data to the display drivers for presentation on the panel.
Abstract:
The present invention provides a method (100) for virtual path switching of an ATM cell on a processing communications satellite. The method includes establishing a set of VPIs (104) associated with output ports on the satellite and assigning one VPI to an ATM cell (108). The ATM cell may then be received by an input port of the satellite (110). An associated output port (114) for the ATM cell is determined from the VPI, and the ATM cell is transferred to that output port (116). The present invention may also provide for multicast switching (400). The VPI assigned to the ATM cell may be associated with a multicast output port. The ATM cells may be reproduced (426) and reassigned with a new VPI from a multicast group of VPIs (428). The reproduced cells are received at an input port of the satellite (430) for routing to the corresponding output ports.
Abstract:
The present invention provides plant retroelements useful as molecular tools. In one embodiment, the present invention provides nucleic acids encoding gag, pol and/or env genes of plant retroelements. The elements can be used, among other uses, as building blocks of other constructs, tools to find other nucleic acid sequences and tools to transfer nucleic acid into cells.
Abstract:
A method and apparatus for closed-loop power threshold leveling for a satellite communication system is provided. A preferred embodiment of the present invention includes a user earth terminal (UET) (140), a satellite (120) and a network control center (NCC) (110). The satellite (120) periodically determines an average error rate for data bursts transmitted by a plurality of UETs (140) and sends the average error rate as well as the number of transmitted data bursts to the NCC (110). The NCC (110) accumulates average error rates over a period of time, and when a predetermined number of data bursts has been surpassed, determines an uplink power threshold adjustment based on the average error rates. The NCC (110) then transmits the uplink power threshold adjustment to the satellite (120), which adjusts an on-board uplink power level threshold in response to the uplink power threshold adjustment. In systems using multiple beams, the satellite (120) maintains a separate uplink power level threshold for each beam, and determines a separate average error rate for each beam. The NCC (140) then determines and transmits a separate uplink power threshold adjustment for each beam. In systems using multiple coding levels, the satellite (120) determines separate error rates for each coding level, and the NCC (110) determines uplink power offset adjustment corresponding to each coding level. The NCC (110) then delivers the uplink power offset adjustments to the UETs (140), which update their local power offset values stored in memory.
Abstract:
A downlink orderwire integrator (63) and separator (81) for use in a processing satellite (12) and a user terminal (14) in a satellite based communications system (10) is provided having a formatter (64), a cell switch (72) and a cell sieve (80). The formatter (64) generates orderwire cells (54) with each orderwire cell (54) having a header (60) and a body (62). The cell switch (72) receives the orderwire cells (54) from the formatter (64) and traffic cells (56) from at least one uplink (16) and arranges the orderwire cells (54) and the traffic cells (52) in at least one frame (48) to transmit on at least one downlink (18). The frame (48) includes a fixed custom frame portion (42) and a fixed traffic portion (50) that contains both the traffic cells (52) and the orderwire cells (54). The cell sieve (80) receives at least one frame (48) from the at least one downlink (18) and separates the traffic cells (52) and the orderwire cells (54) from the traffic portion (50), such that the formatter (64) and cell switch (72) are positioned within the processing satellite (12) and the cell sieve (80) is positioned within the user terminal (14).
Abstract:
A surface sensing device includes an articulating head adapted for attachment to the spindle of a measuring machine and having two relatively rotatable parts capable of rotation about two mutually perpendicular axes. The device additionally includes a stylus assembly having a relatively stiff hollow stylus carrier, and a relatively flexible hollow stylus. An optical transducer system is provided within the stylus assembly and comprises a fixed light source which directs a beam of light towards a stylus tip, and a retro-reflective component at the tip which reflects the beam back to a fixed detector. The arrangement is such that lateral displacement of the stylus tip when the tip is in contact with a surface can be measured directly.
Abstract:
The present invention provides a comprehensive method for controlling, independently, transmit power and coding levels for data transmitted in uplinks and downlinks. One preferred embodiment of the present invention provides a method for adaptive coding of data in a downlink. A data error rate associated with downlink data (e.g., a character error rate provided by a Reed Solomon decoder) is determined. The method, based upon pre-established error rate thresholds, controls the level of coding (e.g., heavy or light) on data in the downlink to achieve a desired data error rate. Heavy coded data is typically associated with a code rate half that of light coded data, and changes between heavy and light coding may be selected using a destination address applied at an originating terminal and interpreted at the satellite.
Abstract:
In a cellular satellite system such as Astrolink, where same frequency, same polarization (same “color”) signals are used in multiple ground cells, there exists the possibility of interference and false reception of uplink Synchronization Bursts (SB) in systems employing TDMA access of the frequency in question. In such systems, a SB transmitted from one terminal may be received in more than one satellite beam. The reception of the signal from a terminal in an undesired beam (330) is erroneous and may adversely impact the time synchronization (360) of the desired terminal. For example, a system may employ Maximal Length (ML) Pseudo-Noise (PN) sequences (410) for its SBs wherein every beam may use the same sequence. To minimize false reception, the ML PN sequences (410) of each SB may be cyclicly shifted a different amount for each beam to generate sequences (410, 420) having low corsscorrelation with each other. By choosing ML PN codes having low crosscorrelation (410, 420) for the different beams, the interference from undesired beams may be minimized (530).
Abstract:
A synchronization burst processor (56) used in a processing satellite (12) in a satellite based communications system (10) is provided with a sync burst memory (72), a first double correlator (74), a second double correlator (76) and a modulus module (78). The sync burst memory (72) stores at least one sync burst (52) transmitted from a terrestrial terminal (14) to the processing satellite (12) where the sync burst (52) is formed from a quadrature pair sample set {p, q}. The first double correlator (74) performs an early correlation and a late correlation of the p samples relative to a sync burst slot (50) to generate an early correlation Pe and a late correlation Pl. The second double correlator (76) performs an early correlation and a late correlation of the q samples relative to the sync burst slot (50) to generate an early correlation Qe and a late correlation Ql. The modulus module (78) determines an early modulus Re and a late modulus Rl from the early correlations Pe and Qe and from the late correlations Pl and Ql. The early modulus Re and the late modulus Rl are used to determine if the sync burst (52) is present in the sync burst slot (50) and if the sync burst (52) is early or late relative to the sync burst slot (50).